## NTNU | Norwegian University of Science and Technology

# **DEURING FOR THE PEOPLE**

Supersingular Elliptic Curves with Prescribed Endomorphism Ring in General Characteristic

Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková, Mattia Veroni

March 1, 2023

## Contents

### Introduction

**The Deuring Correspondence** 

**General Strategy for Computing** 

**Details, Details, Details** 



### Introduction

**The Deuring Correspondence** 

**General Strategy for Computing** 

Details, Details, Details



## Setting the Stage 1/3

▶ The *Deuring Correspondence* gives a bridge between two settings.

- ► The geometric world of supersingular elliptic curves.
- The arithmetic world of quaternion algebras.
- ▶ In the geometric world, problems we care about are *hard*.
- ► In the arithmetic world, problems we care about are *easy*.
- Translating between these settings happens via the endomorphism ring.



## Setting the Stage 2/3

- Going from a supersingular elliptic curves to a maximal order is hopefully hard
  - Given E, computing End(E).
- ► Going the other way is easy<sup>TM</sup>.
  - Given End(E), computing E.
  - ► Fast for specifically chosen primes *p* (SQISign).
  - Harder for general p (still known to be polytime in general)
- This work: Reasonably efficient for general p too, and we provide an easy-to-use SageMath code!

# Setting the Stage 3/3

- Why is this a natural problem to study?
  - ▶ The strategy we outline requires working with E[T], where  $T > p^3$ , and where T is smooth.
  - Using techniques from SQISign, this can be reduced to  $T > p^{5/4+\epsilon}$ .
  - ► Having  $E[T] \subseteq E(\mathbb{F}_{p^2})$  not feasible in general, how detrimental is this to performance?
- Why is this a useful problem to study?
  - Having an algorithm that works for general characteristic is nice for playing around with.
  - Protocol usage down the line (e.g. as precomputation)?
  - Tighter security reductions.
- Key point:
  - ▶ Can "always" choose  $T > p^3$  reasonably smooth, such that  $E[\ell^e] \subseteq E(\mathbb{F}_{p^{2k}})$  for k reasonably small for all  $\ell^e \mid T$  (even though E[T] might only live in a huge extension field).



#### Introduction

### The Deuring Correspondence

**General Strategy for Computing** 

Details, Details, Details



# **Supersingular curves**

Let E be an elliptic curve.

- The endomorphism ring End(E) is the ring of all isogenies from E to itself (+ zero map).
  - Addition is pointwise, and multiplication is composition.
- *E* is *supersingular* if it satisfies:
  - End(E) is isomorphic to a maximal order in a quaternion algebra.
  - ▶  $#E(\mathbb{F}_{p^k}) \equiv 1 \pmod{p}$ . Important, because we know the order of  $E(\mathbb{F}_{p^k})$ .

Let E be supersingular.

- *E* is isomorphic to a curve defined over  $\mathbb{F}_{p^2}$ .
- $\phi: E \to E'$  can always be defined over  $\mathbb{F}_{p^2}$ , potentially by composing with some isomorphisms.

## **Quaternion Algebras**

• A quaternion algebra B over  $\mathbb{Q}$  has elements which look like

$$\alpha = x + y\mathbf{i} + z\mathbf{j} + w\mathbf{k}, \quad x, y, z, w \in \mathbb{Q}$$

and where multiplication is defined by ij = -ji = k and  $i^2 = -q$ ,  $j^2 = -p$ .

- ▶ Values q and p determine *ramified places*. Throughout this presentation, we'll be looking at quaternion algebras  $B_{p,\infty}$ , i.e. ramified at p and  $\infty$ .
- We define the norm as

 $\operatorname{nrd}(\alpha) = \alpha \bar{\alpha}$ 

where  $\bar{\alpha} = x - y\mathbf{i} - z\mathbf{j} - w\mathbf{k}$ .

## **Quaternion Lattices**

• Given any  $\mathbb{Q}$ -basis  $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$  of B, a  $\mathbb{Z}$ -lattice is

$$I = \alpha_1 \mathbb{Z} + \alpha_2 \mathbb{Z} + \alpha_3 \mathbb{Z} + \alpha_4 \mathbb{Z}$$

- We extend the norm to lattices by  $nrd(I) = gcd({nrd}(\alpha) \mid \alpha \in I))$ .
- An *order* is a lattice  $\mathcal{O} \subseteq B$ , which is also a subring (i.e.  $1 \in \mathcal{O}$ , and closed under multiplication).
  - An order is *maximal* if it is not strictly contained in any other orders.
- Given a lattice *I*, we define its left order as

$$\mathcal{O}_L(I) = \{ \alpha \in B \mid \alpha I \subseteq I \}$$

- ▶ A left  $\mathcal{O}$ -ideal I satisfies  $\mathcal{O} \subseteq \mathcal{O}_L(I)$ , and  $\mathcal{O} = \mathcal{O}_L(I)$  if  $\mathcal{O}$  is maximal.
  - $\mathcal{O}_R(I) \neq \mathcal{O}$  in general, but  $\mathcal{O}_R(I)$  is still an order.

## **Quaternion Lattices - Example**

The lattice

$$I = \mathbb{Z}79 \oplus \mathbb{Z}\frac{79+79\mathbf{i}}{2} \oplus \mathbb{Z}(37+3\mathbf{i}+\mathbf{j}) \oplus \mathbb{Z}\frac{791+453\mathbf{i}+7\mathbf{j}+\mathbf{k}}{14}$$

has nrd(I) = 79. Further, its left and right orders are

$$\mathcal{O}_L(I) = \mathbb{Z} \oplus \mathbb{Z} rac{1+\mathbf{i}}{2} \oplus \mathbb{Z} rac{\mathbf{j}+\mathbf{k}}{2} \oplus \mathbb{Z} rac{2\mathbf{i}-\mathbf{k}}{7},$$

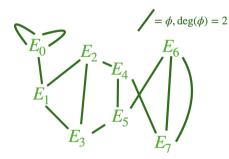
and

$$\mathcal{O}_R(I) = \mathbb{Z} \oplus \mathbb{Z} \frac{1+79\mathbf{i}}{2} \oplus \mathbb{Z} (3\mathbf{i}+\mathbf{j}) \oplus \mathbb{Z} \frac{553+35467\mathbf{i}+987\mathbf{j}+\mathbf{k}}{1106}.$$

In a sense, *I connects* these two orders.



# Supersingular curve graph



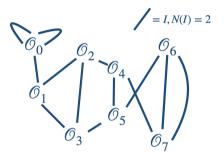
Fix some prime p, and another prime  $\ell$ .

- ► Vertices: Isomorphism classes of supersingular elliptic curves over ℝ<sub>p</sub>
- Edges: Isogenies of degree l (up to post-isomorphism).

# **Quaternion order graph**

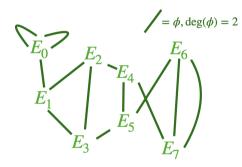
Fix some prime p, and another prime  $\ell$ .

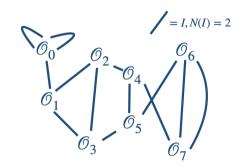
- Vertices: Isomorphism classes of (oriented) maximal orders  $\mathcal{O}_i \in B_{p,\infty}$
- *Edges*<sup>1</sup>: Ideals of norm  $\ell$ , with endpoints being its  $\mathcal{O}_L(I)$  and  $\mathcal{O}_R(I)$ .



<sup>&</sup>lt;sup>1</sup>This is a bit handwavy; these ideals are identified up to *something*.

## **Deuring Correspondence**







Introduction

**The Deuring Correspondence** 

### **General Strategy for Computing**

Details, Details, Details



We focus on the following problem

#### **Problem:**

Given a maximal order  $\mathcal{O} \in B_{p,\infty}$ , compute a supersingular elliptic curve  $E/\mathbb{F}_{p^2}$  such that  $\text{End}(E) \cong \mathcal{O}$ .

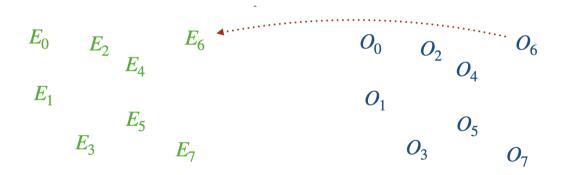
Solving this:

**Step 0:** Fix a base curve  $E_0/\mathbb{F}_p$ , with *effective* endomorphism ring  $\mathcal{O}_0$ . **Step 1:** Find an ideal I with  $\mathcal{O}_L(I) = \mathcal{O}_0, \mathcal{O}_R(I) = \mathcal{O}$  of *suitable norm*. **Step 2:** Compute the isogeny  $\phi_I : E_0 \to E$  corresponding to the ideal I.



## Problem

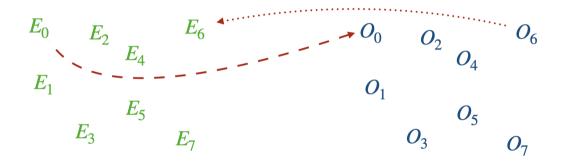
Given a maximal order  $\mathcal{O} \in B_{p,\infty}$ , compute a supersingular elliptic curve  $E/\mathbb{F}_{p^2}$  such that  $\text{End}(E) \cong \mathcal{O}$ .





## Step 0

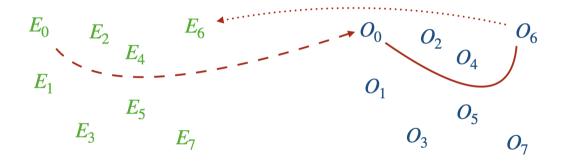
Fix a base curve  $E_0/\mathbb{F}_p$ , with *effective* endomorphism ring  $\mathcal{O}_0$ .





## **Step 1.1**

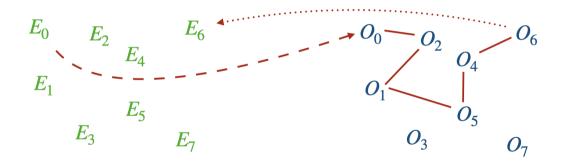
Find an ideal J with  $\mathcal{O}_L(J) = \mathcal{O}_0, \mathcal{O}_R(J) = \mathcal{O}$ .





## **Step 1.2**

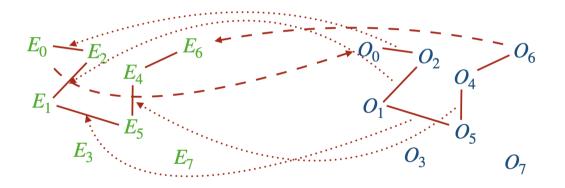
Find an ideal  $I \sim J$  of suitable norm.





## Step 2

Compute the isogeny  $\phi_I : E_0 \to E$  corresponding to the ideal *I*.





Introduction

**The Deuring Correspondence** 

**General Strategy for Computing** 

**Details, Details, Details** 



# **Effective endomorphism ring**

- Knowing that  $\operatorname{End}(E) \simeq \mathcal{O}$  might be insufficient for many tasks.
- Given an  $\alpha \in \mathcal{O}$  (a quaternion), we want to be able to evaluate  $\alpha(P)$  for points  $P \in E$  (computing an endomorphism).

*Effective endomorphism ring* is when we can do the latter.

• Example:  $p \equiv 2 \pmod{3}$ , then  $E_0: y^2 = x^3 + 1$  has effective endomorphism ring

$$\mathbb{Z} \oplus \mathbb{Z} rac{1+\mathbf{i}}{2} \oplus \mathbb{Z} rac{\mathbf{j}+\mathbf{k}}{2} \oplus \mathbb{Z} rac{\mathbf{i}+\mathbf{k}}{3}$$

where the endomorphism j is Frobenius and  $\omega = \frac{i-1}{2}$  is given by

$$\omega(x,y) = (\zeta_3 \cdot x, y), \qquad \zeta_3^3 = 1, \zeta_3 \neq 1$$



## Solving step 0

- ▶ If  $p \not\equiv 1 \pmod{12}$ , there are always "standard" choices.
- ▶ If  $p \equiv 1 \pmod{12}$ , use Bröker's algorithm to generate a supersingular curve over  $\mathbb{F}_p$ .
  - Corresponding maximal order is known.
  - Endomorphism corresponding to j is Frobenius.
  - Must recover endomorphism corresponding to i.

## Step 2 - Ideal to Isogeny

Recall: Step 1 will find an ideal I with  $\mathcal{O}_L(I) = \mathcal{O}_0, O_R(I) = \mathcal{O}$ .

Use the kernel of the ideal I, defined as

$$E[I] = \{ P \in E \mid \alpha(P) = 0, \forall \alpha \in I \}$$

The isogeny corresponding to I is

 $\phi_I: E \to E/E[I]$ 

▶ "Find *E*[*I*] by evaluating *I* on the nrd(*I*)-torsion on *E*"

## Step 2 - In practice

Set  $T = \operatorname{nrd}(I)$ . Can write I as  $\mathcal{O}_0(T, \alpha)$ , for any  $\alpha \in I, \operatorname{gcd}(T^2, \operatorname{nrd}(\alpha)) = T$ . So

 $E[I] = E[T] \cap \ker \alpha = \bar{\alpha}(E[T])$ 

- Explicitly: Let  $\langle P, Q \rangle = E[T]$ . Then  $\phi_I$  has kernel  $\langle \bar{\alpha}(P), \bar{\alpha}(Q) \rangle$ .
- ► Cost: *P*, *Q* might only be defined over huge extension fields.
  - ► Work with prime powers separately. Okay, since isogenies between supersingular curves can always be made F<sub>p<sup>2</sup></sub>-rational.
  - We give a cool algorithm for computing  $\mathbb{F}_{p^2}$ -rational isogenies from irrational points.
- Cost: Going from E[I] to  $\phi_I$  depends on the smoothness of  $T = \operatorname{nrd}(I)$ .
- Hence we would love to control nrd(I). This is where KLPT comes in!

## Step 1 - KLPT

KLPT allows us to "control the norm of  $\mathcal{O}_0$ -ideals".

**Input:** A maximal order  $\mathcal{O}_0$  of a special form, a left ideal *I*, integer  $T > p^3$ . **Output:** A left  $\mathcal{O}_0$ -ideal  $J \sim I$  with  $\operatorname{nrd}(J) \mid T$ .

KLPT assumes that  $\mathcal{O}_0$  is of a special form, namely so that

 $R + \mathbf{j}R \subseteq \mathcal{O}_0$ 

for an imaginary quadratic order R of small discriminant.



## Step 1 - What norm to target?

Generic: Pick the smallest B such that a  $T = \prod \ell_i^{e_i} < p^3$ , with  $\ell_i^{e_i} < B$  exists.

► Call this strategy *naïve powersmooth*.

There is no reason to fix such a choice. Instead, look at the factorization of  $p^k \pm 1$  to pick favorable torsion. Specifically, for each prime power  $\ell^e \mid T$ :

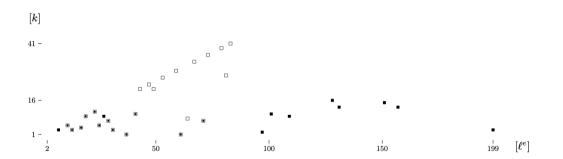
- Cost:  $E[\ell^e]$  might only be defined over huge extension fields.
  - $\ell^e$  should divide  $p^k \pm 1$  for small k.
- Cost: Going from E[I] to  $\phi_I$  depends on the smoothness of  $T = \operatorname{nrd}(I)$ .
  - *l* should be small.

We implement greedy algorithm to select T to minimize the total cost w.r.t a *cost model* based on these factors above.



## **A Thousand Words**

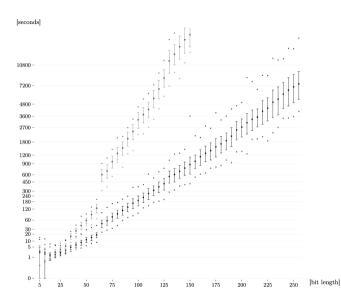
□: Naïve powersmooth■: Our optimisation





# Timings

- Gray: Naïve powersmooth
- Black: Our optimisation





30

## **Summary**

Goal: Given a maximal order  $\mathcal{O} \in B_{p,\infty}$ , compute  $E/\mathbb{F}_{p^2}$  such that  $\operatorname{End}(E) \cong \mathcal{O}$ .

**Step 0:** Fix a base curve  $E_0/\mathbb{F}_p$ , with *effective* endomorphism ring  $\mathcal{O}_0$ .

Bröker + Finding the effective isomorphism.

**Step 1:** Find an ideal *I* with  $\mathcal{O}_L(I) = \mathcal{O}_0, \mathcal{O}_R(I) = \mathcal{O}$  of *suitable norm*.

Target norm chosen carefully to optimise Step 2.

KLPT

**Step 2:** Compute the isogeny  $\phi_I : E_0 \to E$  corresponding to the ideal *I*.

- Finding kernel of the ideal is easy, as long as its defined over a reasonable extension field.
- Work with prime powers separately, means we can stay over smaller extension fields.
- Find the corresponding  $\mathbb{F}_{p^2}$ -rational isogeny.



## **Summary**

- ▶ We have implemented this algorithm in SageMath.
  - Try our code! https://github.com/friends-of-quaternions/deuring
- Reasonably efficient, for primes up to 256 bit.
- ► This + SageMath implementation of SQISign with accompanying blog post (Coming soon<sup>TM</sup>) by Maria Corte-Real Santos and Giacomo Pope (++), hopefully will make SQISign-stuff more accessible for SageMath fans!

# Thank you for your attention

# **D NTNU** | Norwegian University of Science and Technology