DTTNU | Norwegian University of Science and Technology

Supersingular Endomorphism Rings: Algorithms and Applications

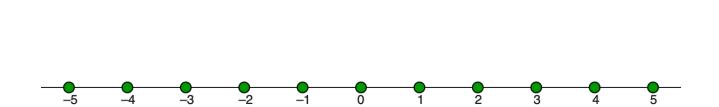
Jonathan Komada Eriksen, 23.08.2024

Overview

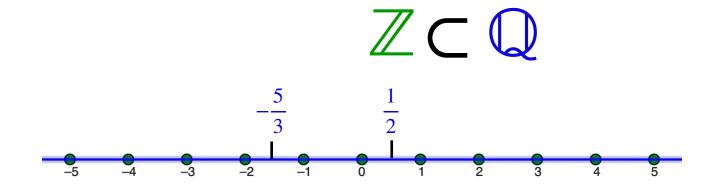
- The Deuring correspondence
 - Numberfields, quaternion algebras and orders
 - Elliptic curves, and endomorphism rings
- Papers about the constructive deuring correspondence
 - Deuring for the People
- Papers about orientations
 - PEARL-SCALLOP

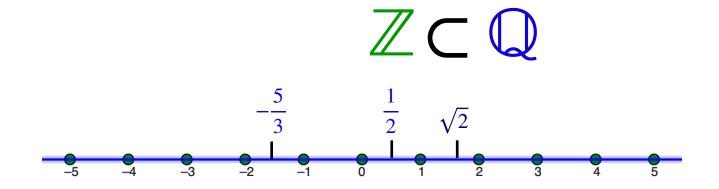
Background: The Deuring Correspondence

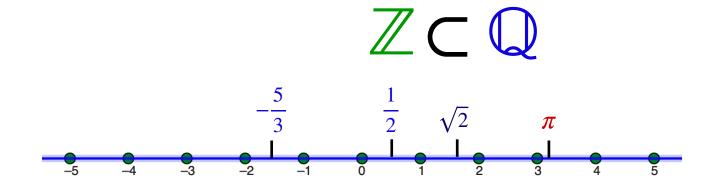
The focal point of this thesis

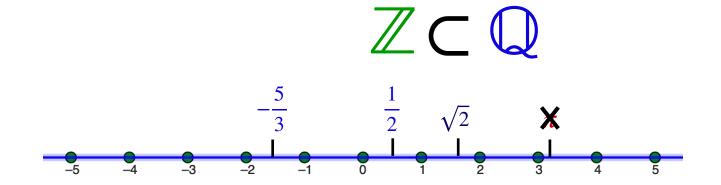


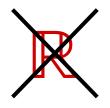
1



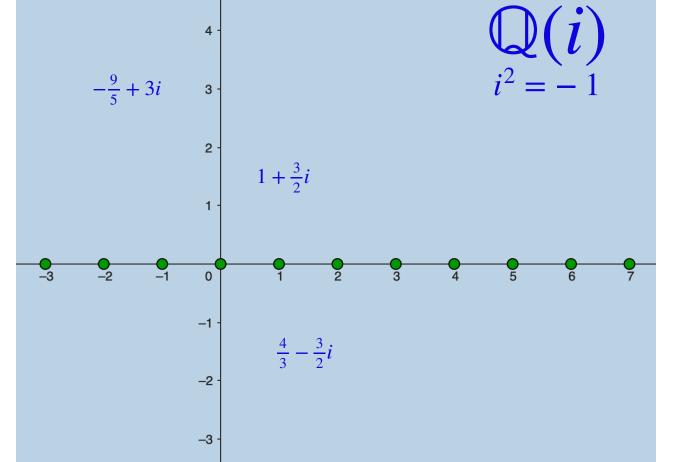




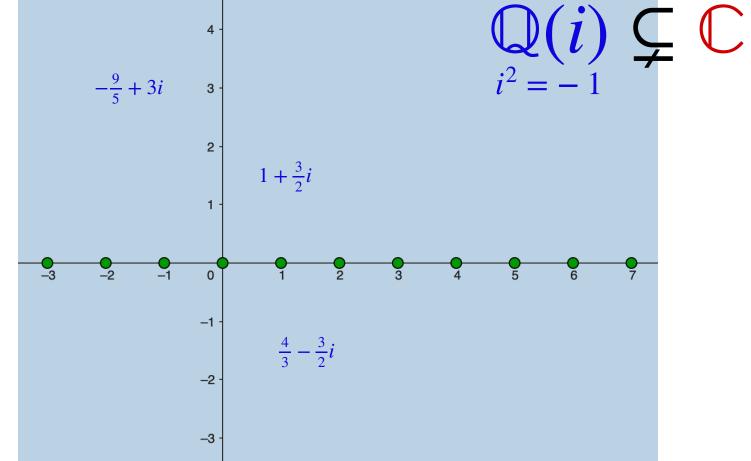




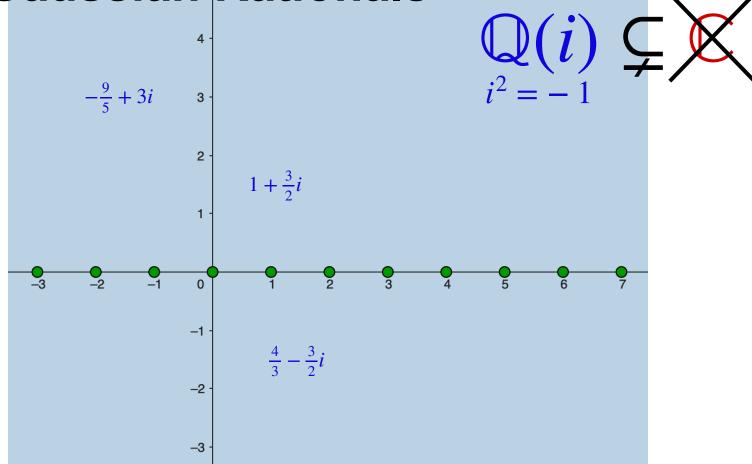
The Gaussian Rationals



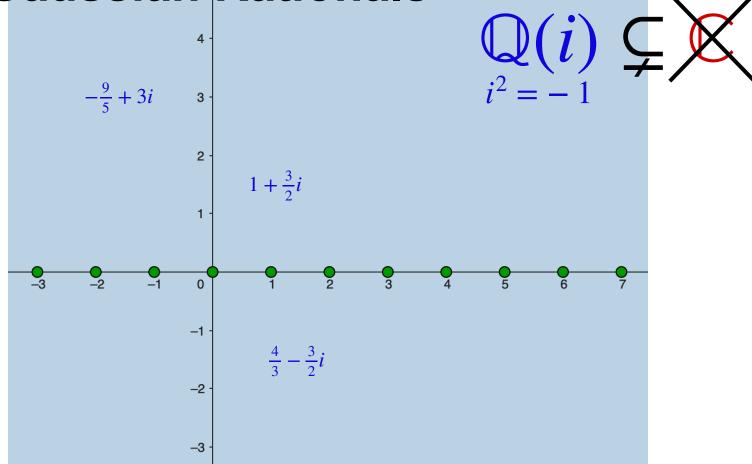
The Gaussian Rationals



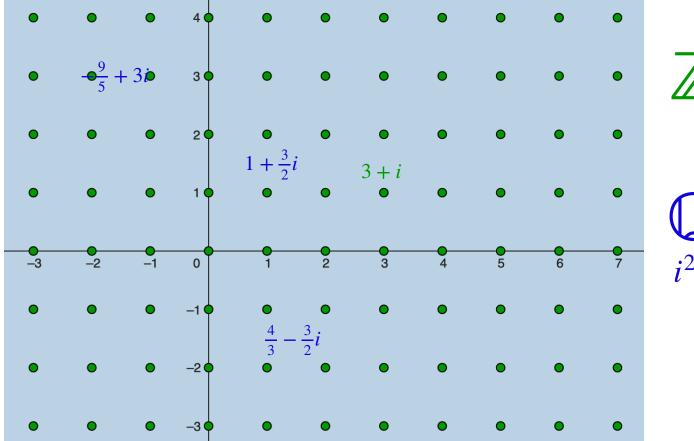
The Gaussian[®] Rationals



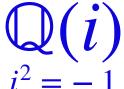
The Gaussian[®] Rationals



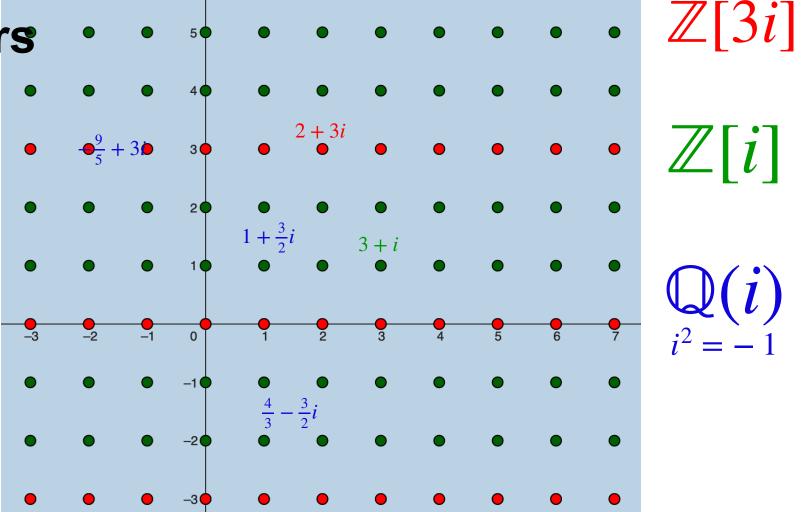
The Gaussian Integers • • •

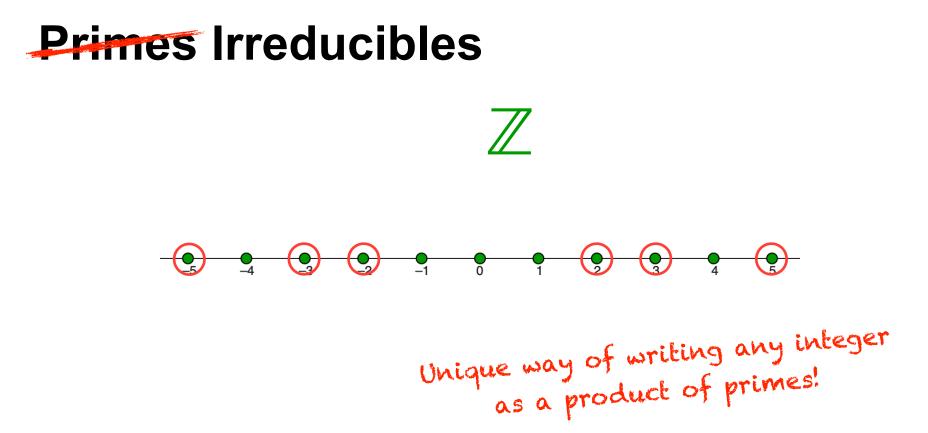


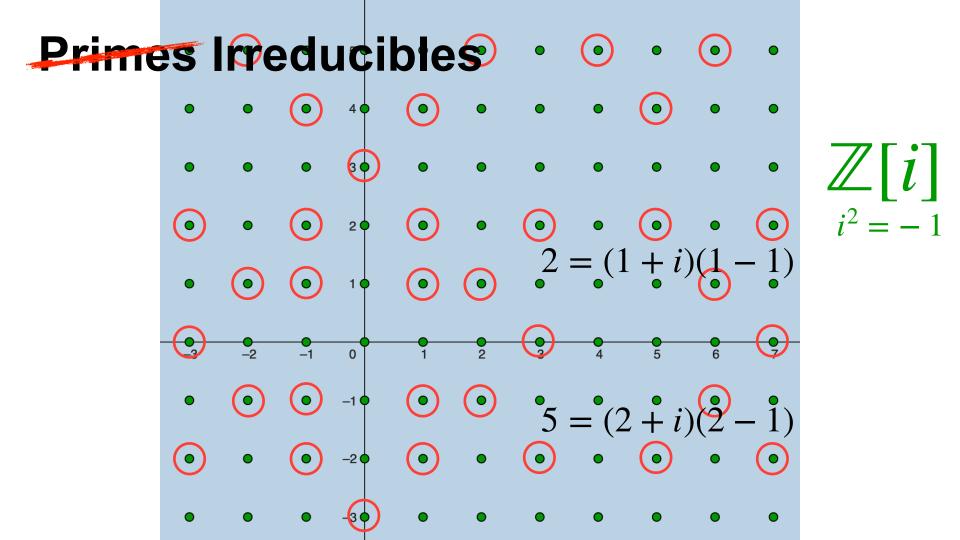
 $\mathbb{Z}[i]$

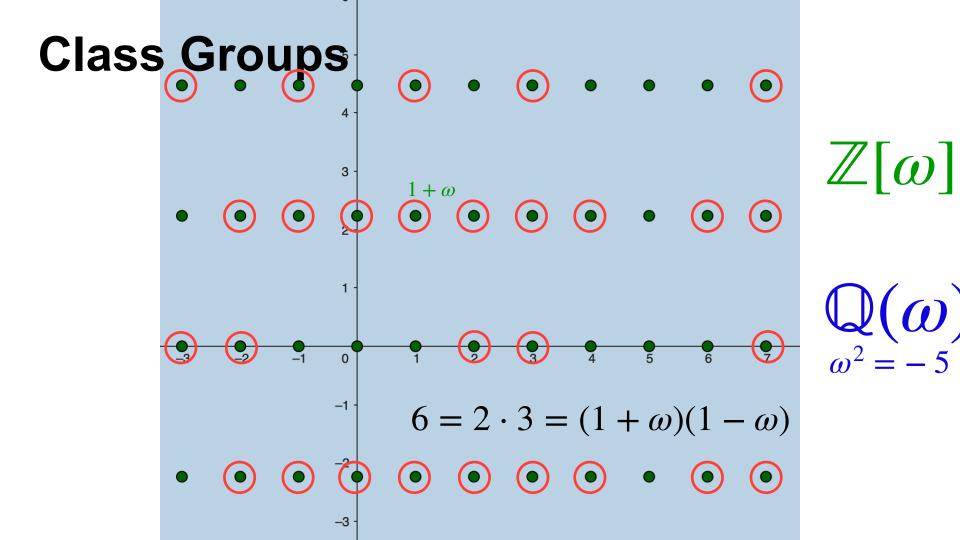


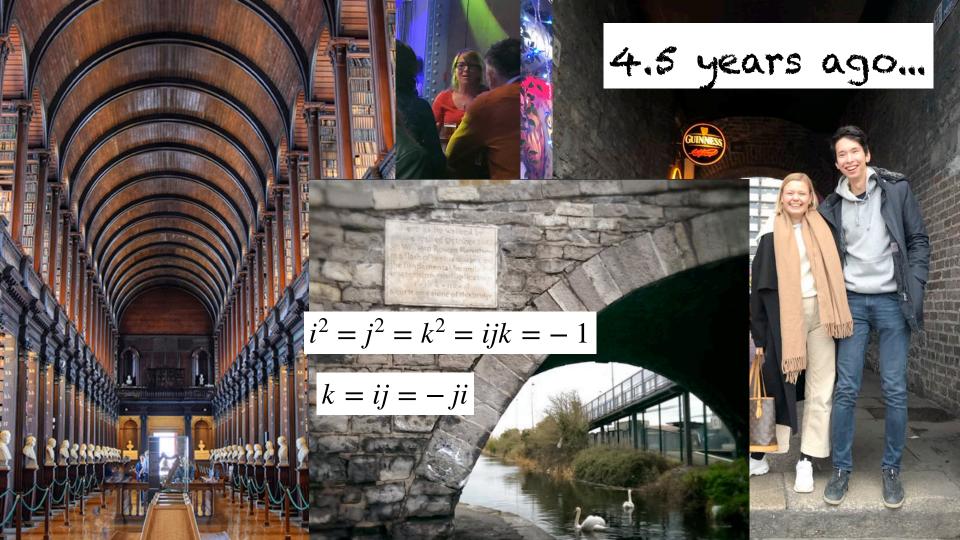
Orders









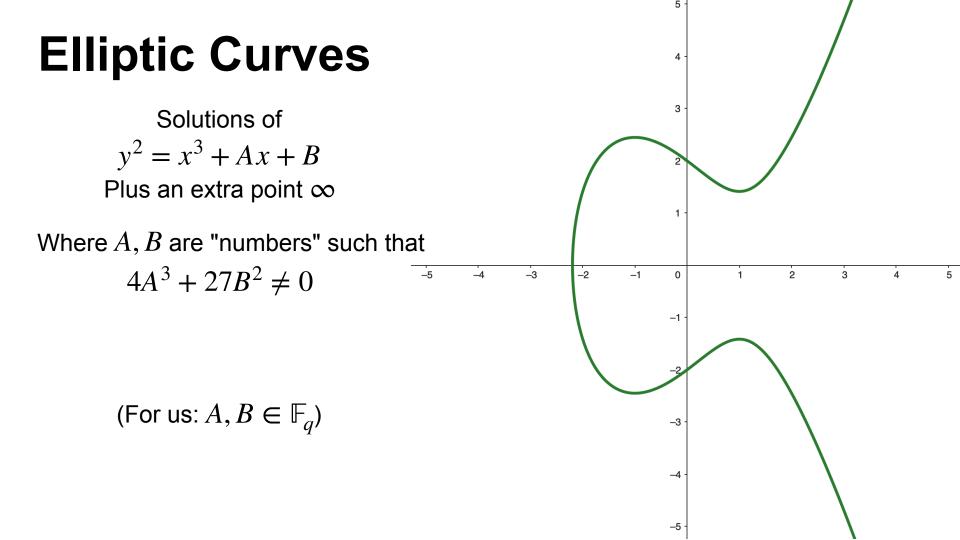


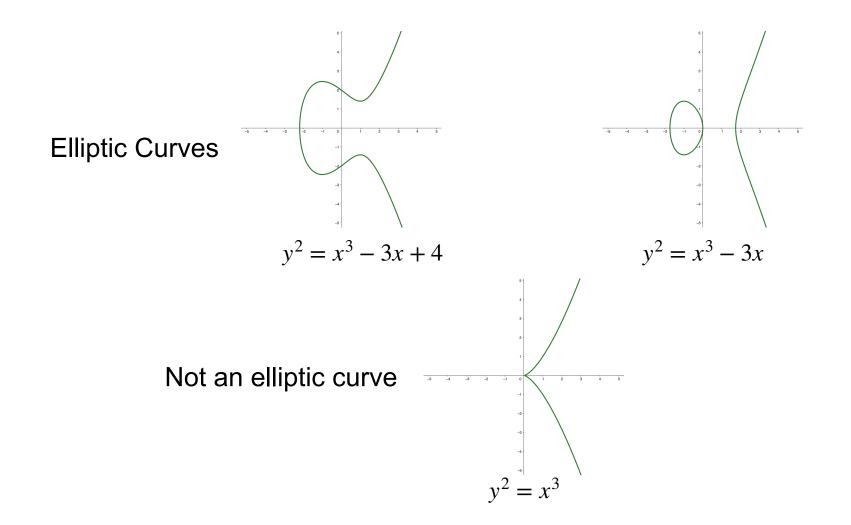
Quaternion Algebras

$$B_{p,\infty} = \mathbb{Q} + \mathbb{Q}i + \mathbb{Q}j + \mathbb{Q}k \text{ where}$$

$$i^2 = -1, \quad j^2 = -p, \quad k = ij = -ji$$

- Some 4-dimensional thing
- Orders: E.g. $\mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k$ (not maximal)
- Typically many maximal orders!

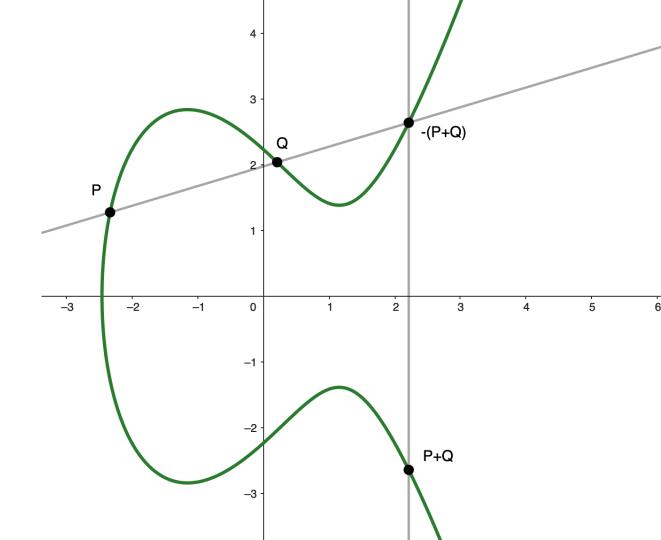


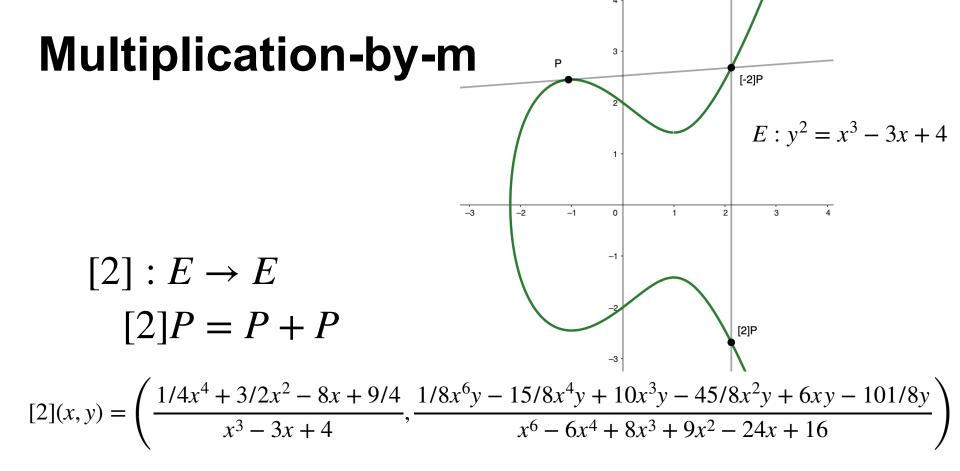


Addition

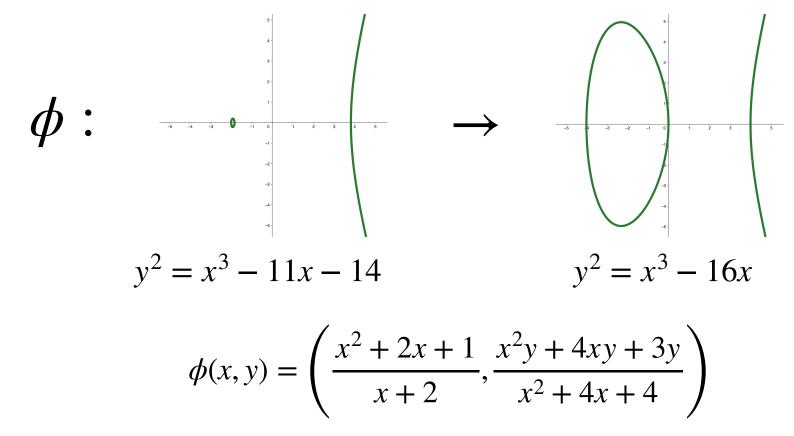
Points form an abelian group!

I.e. we can "add" points in a meaningful way





Isogenies



Endomorphisms

- An isogeny $\phi: E \to E$ from a curve to itself
- Can be "added" (point wise):

•
$$(\phi + \psi)(P) = \phi(P) + \psi(P)$$

• Can be "multiplied" (composition):

•
$$(\phi \cdot \psi)(P) = \phi(\psi(P))$$

This gives the endomorphism ring!

$$E: y^2 = x^3 + x$$
$$\mathbb{Z} \subseteq \text{End}(E)$$

• For every integer $n \in \mathbb{Z}_{>0}$ there is a map

$$[n] : E \to E$$
$$[n]P = \underbrace{P + \ldots + P}_{}$$

п

-2 -1

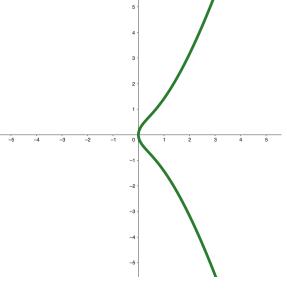
$$E: y^2 = x^3 + x$$
$$\mathbb{Z}[\iota] \subseteq \operatorname{End}(E)$$

• There is another map:

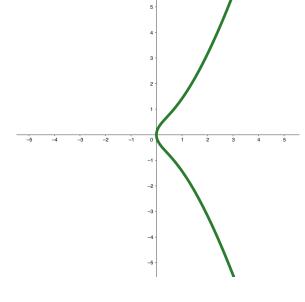
$$\iota: E \to E$$
$$\iota(x, y) = (-x, y\sqrt{-1})$$

• What is ι^2 ?

$$\iota^{2}(P) = \iota(\iota(P)) = [-1]P$$



$$E: y^{2} = x^{3} + x$$
$$\mathbb{Z}\langle \iota, \pi \rangle \subseteq \text{End}(E)$$
Let $p \equiv 3 \pmod{4}$, and let E/\mathbb{F}_{p}
$$\pi: E \to E$$
$$\pi(x, y) = (x^{p}, y^{p})$$



 $\pi \iota(P) = [-1]\iota \pi(P) \qquad \pi^2(P) = \pi(\pi(P)) = [-p]P$ A bit more work: $\mathbb{Z} + \iota \mathbb{Z} + \pi \mathbb{Z} + \iota \pi \mathbb{Z} \subseteq \text{End}(E)$

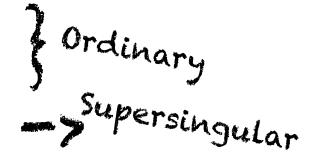
$$E: y^2 = x^3 + x$$

- Let $p \equiv 3 \pmod{4}$, and let E/\mathbb{F}_p
- Then $\operatorname{End}(E) = \mathbb{Z} + \imath \mathbb{Z} + \frac{\imath + \pi}{2} \mathbb{Z} + \frac{1 + \imath \pi}{2} \mathbb{Z}$,

a maximal order in a quaternion algebra.

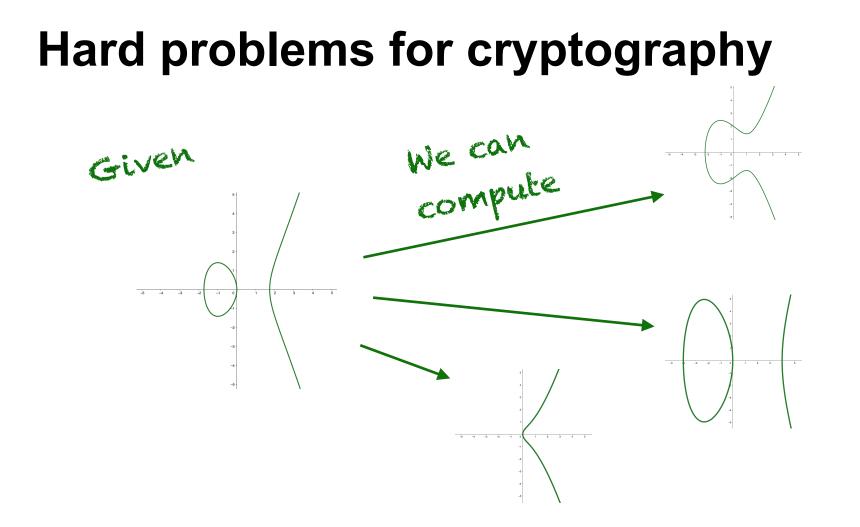
Endomorphism Rings Are Orders

- General **theorem**: End(E) is either:
 - Z
 - An imaginary quadratic order (e.g. $\mathbb{Z}[i]$)
 - A maximal order in a quaternion algebra



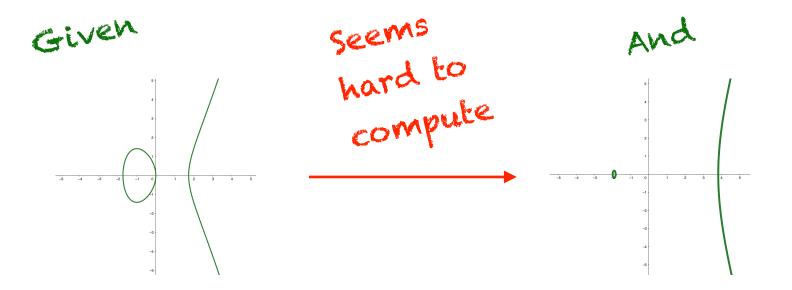
The Deuring Correspondence

- This is only the beginning!
- Supersingular case: exact correspondence ideals ⇔ isogenies



Hard problems for cryptography

Hard problems for cryptography



The isogeny problem \Leftrightarrow The endomorphism ring problem

Part 2: The Constructive Deuring Correspondence

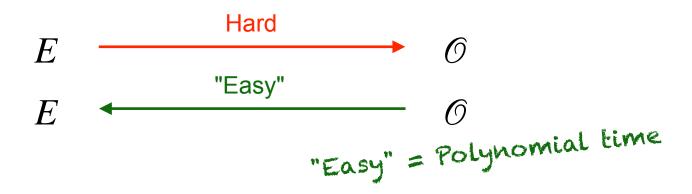
Efficiently computing the easy way of the Deuring correspondence, and cryptographic applications

Deuring for the People:

Supersingular Elliptic Curves with Prescribed Endomorphism Ring in General Characteristic

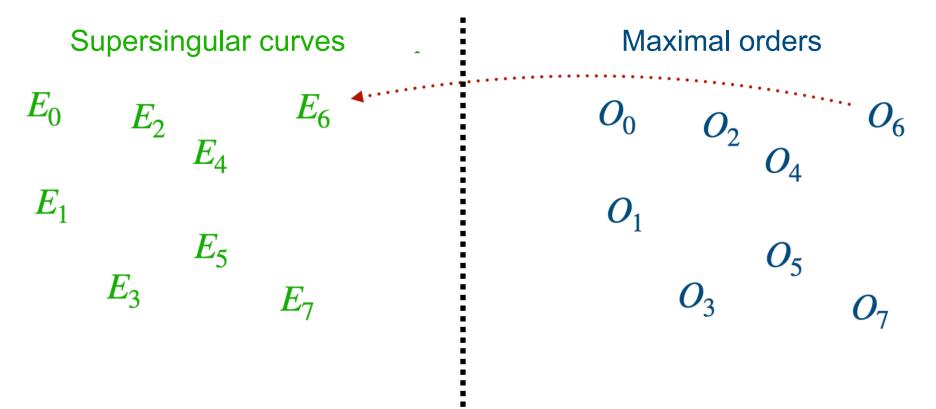
Jonathan Komada Eriksen, Lorenz Panny, Jana Sotáková and Mattia Veroni

Motivation

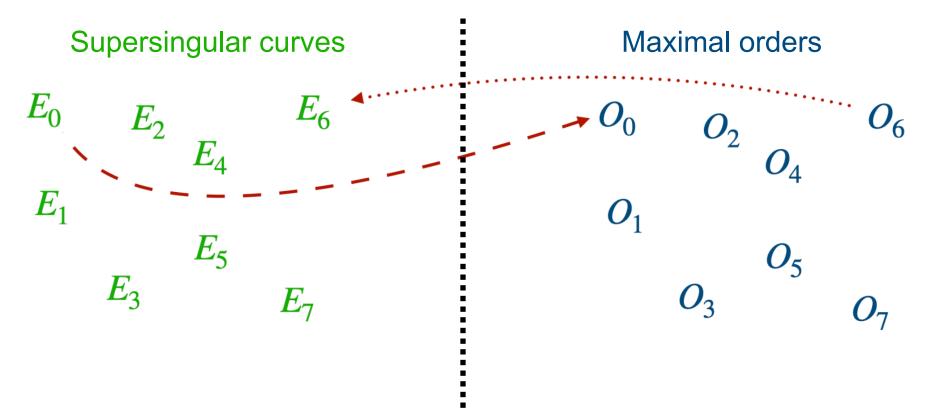


- SQIsign: Efficient by carefully choosing *p*
- Should work for any *p*
 - Previous attempts: Up to $p \sim 30$ bits

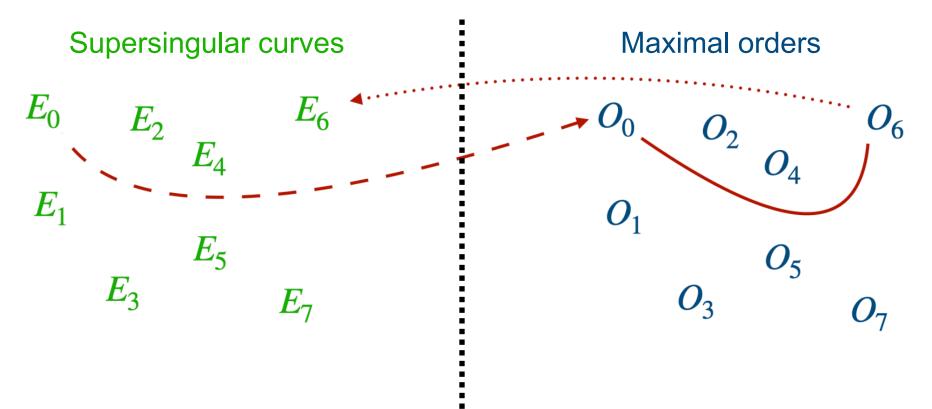
Algorithm: Task



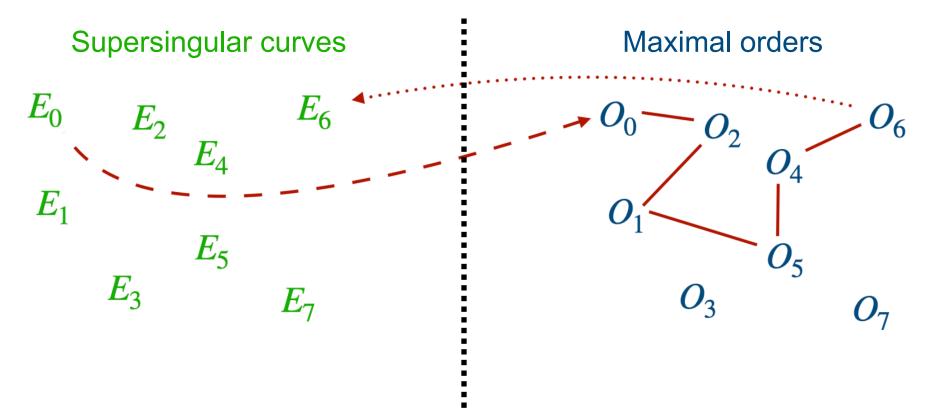
Algorithm: Fix Base Curve



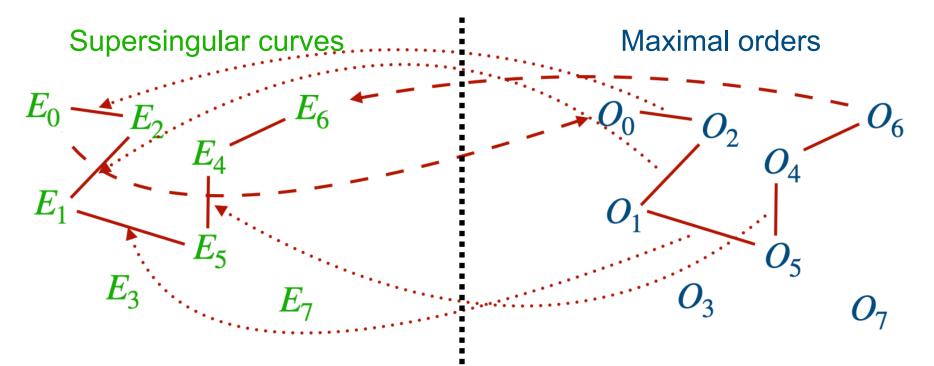
Algorithm: Solve on Quaternion Side



Algorithm: KLPT (!!!!)



Algorithm: Translate Back



Optimisations, and Results

- Choose output norm of KLPT based on prime
- Combine known results, and optimise the way to give a starting curve with known endomorphism ring in any characteristic *p*
- Faster computation of isogenies generated by points in field-extensions

Result: Can compute the Deuring correspondence for characteristic of any reasonable size, i.e. thousands of bits.

Cryptographic Smooth Neighbors

Giacomo Bruno, Maria Corte-Real Santos, Craig Costello, Jonathan Komada Eriksen, Michael Meyer, Michael Naehrig, and Bruno Sterner

AprèsSQI:

Extra Fast Verification for SQIsign Using Extension-Field Signing

Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, and Krijn Reijnders

Part 3: Oriented Endomorphism Rings

Optimal Embeddings and Primitive Orientations

Optimal Embeddings

$$i^2 = -1, \quad j^2 = -p, \quad k = ij = -ji$$

Quaternion orders: \mathcal{O} (e.g. $\mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k$) Imaginary Quadratic Orders: \mathfrak{O} (e.g. $\mathbb{Z}[\sqrt{-1}] = \mathbb{Z} + \mathbb{Z}\sqrt{-1}$)

$\mathfrak{D}\subset \mathscr{O}$

Optimal Embeddings

$$i^2 = -1, \quad j^2 = -p, \quad k = ij = -ji$$

Quaternion orders: \mathcal{O} (e.g. $\mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k$) Imaginary Quadratic Orders: \mathfrak{O} (e.g. $\mathbb{Z}[\sqrt{-1}] = \mathbb{Z} + \mathbb{Z}\sqrt{-1}$) (Optimal) embedding

$$\iota: \mathfrak{D} \hookrightarrow \mathcal{O}$$
$$\iota\left(\sqrt{-1}\right) = i$$

(Not optimal for $\mathfrak{O} = \mathbb{Z}[3\sqrt{-1}]$)

Primitive Orientations

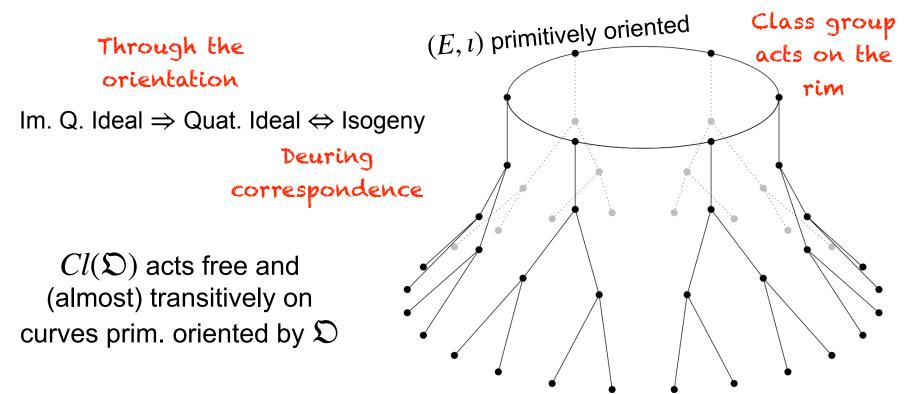
$$i^2 = -1, \quad j^2 = -p, \quad k = ij = -ji$$

Quaternion orders: \mathscr{O} (e.g. $\mathbb{Z} + \mathbb{Z}i + \mathbb{Z}j + \mathbb{Z}k$) Imaginary Quadratic Orders: \mathfrak{O} (e.g. $\mathbb{Z}[\sqrt{-1}] = \mathbb{Z} + \mathbb{Z}\sqrt{-1}$)

$$i: \mathfrak{D} \hookrightarrow \bigotimes_{\text{End}(E)}^{(Optimal)} \operatorname{emb}_{edding} ind(E)$$

(Not optimal for $\mathfrak{D} = \mathbb{Z}[3\sqrt{-1}]$)

Class Group Actions and Volcanoes



Computing Orientations from the Endomorphism Ring of Supersingular Curves and Applications

Jonathan Komada Eriksen and Antonin Leroux

Generalized Class Group Actions on Oriented Elliptic Curves with Level Structure

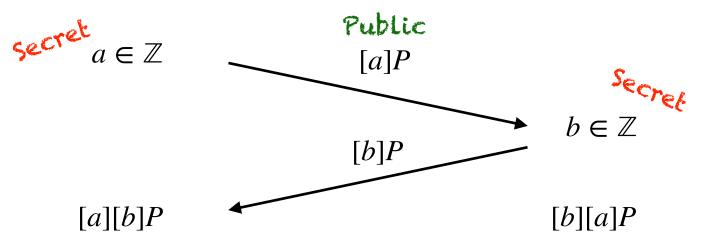
Sarah Arpin, Wouter Castryck, Jonathan Komada Eriksen, Gioella Lorenzon and Fréderik Vercauteren

PEARL-SCALLOP:

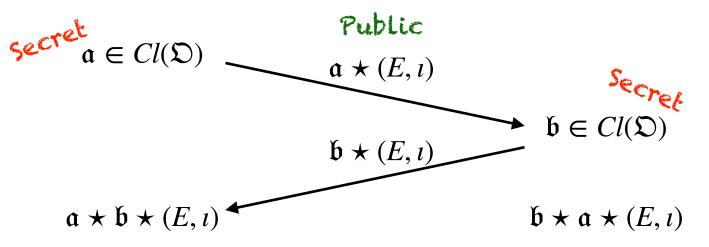
Parameter Extension Applicable in Real Life for SCALLOP

Bill Allombert, Márton Tot Bagi, Jean-françois Biasse, Jonathan Komada Eriksen, Péter Kutas, Chris Leonardi, Aurel Page and Renate Scheidler

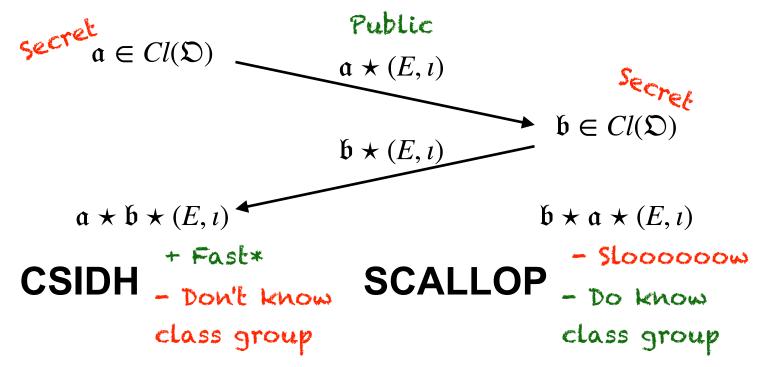
Can do "Diffie-Hellman" on primitively oriented curves!



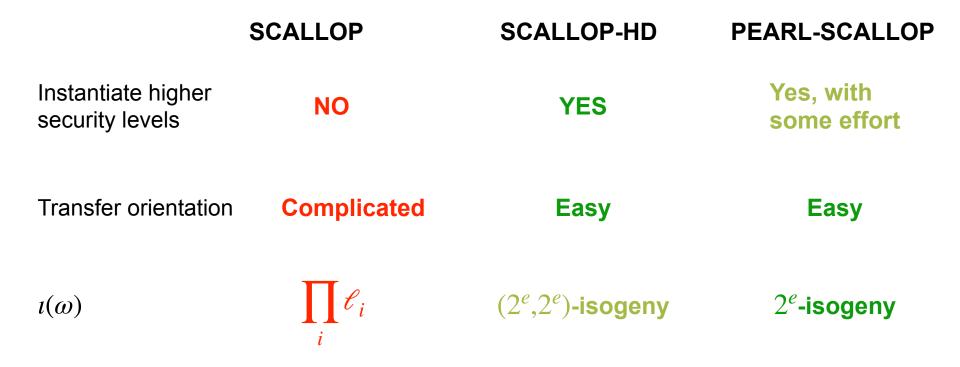
Can do "Diffie-Hellman" on primitively oriented curves!



Can do "Diffie-Hellman" on primitively oriented curves!



Comparison



Appendix: A bit more on each paper

Cryptographic Smooth Neighbors

Giacomo Bruno, Maria Corte-Real Santos, Craig Costello, Jonathan Komada Eriksen, Michael Meyer, Michael Naehrig, and Bruno Sterner

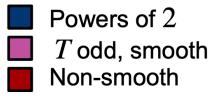
Application: SQIsign

KLPT: Need a "nice" $T > p^{\text{X} 5/4}$

- *T* should be a product of small primes
- Every $\ell^r \mid T$ should also satisfy $\ell^r \mid p^{2k} 1$ for small k

When designing protocols we get to pick
$$p!$$
 $T | p^2 - 1$

This paper: Find p such that $2^{f}T \mid p^{2} - 1$ for "nice" T



p -

p + 1

NTNU | Norwegian University of Science and Technology

How to find nice primes?

Observation: $a - X \in \mathbb{Q}[X]/f(X)$, where $f(X) = X^2 + bX + c$ satisfies N(a - X) = f(a)Roughly, "size" of element

Step 1: Find all $a - X \in \mathbb{Z}[X]/f(X)$, with N(a - X) < B**Step 2:** Keep multiplying such elements until no more are found

Result: $a \in \mathbb{Z}$ such that no prime factor of f(a) is bigger than B

Results:

Example: Found

$$\alpha = 8024062483697733052848331592095498751$$
with

$$\alpha^{2} - 1 = 2^{10} \cdot 3^{2} \cdot 5^{4} \cdot 7 \cdot 13^{2} \cdot 17^{2} \cdot 19 \cdot 29 \cdot 31^{2} \cdot 41 \cdot 43^{2} \cdot 47^{2} \cdot 83^{2} \cdot 103^{2} \cdot 109 \cdot 163 \cdot 173 \cdot 239 \cdot 241^{2} \cdot 271 \cdot 283 \cdot 311^{2} \cdot 479^{2} \cdot 499 \cdot 509 \cdot 523^{2}$$
Not useful for protocols yet

Simple trick: Given (r, r + 1) twin smooth, try $p = 2r^n - 1$ Found lots of primes useful for SQIsign Caveat: No real way of controlling power of 2

Norwegian University of Science and Technology

AprèsSQI:

Extra Fast Verification for SQIsign Using Extension-Field Signing

Maria Corte-Real Santos, Jonathan Komada Eriksen, Michael Meyer, and Krijn Reijnders

Lessons:

- **The nicest SQIsign primes The nicest SQIsign primes** are still pretty bad...
- Working over extension fields is okay! Deuring for the People Corresponds to allowing $\ell^e | p^{2k} 1$ where k > 1

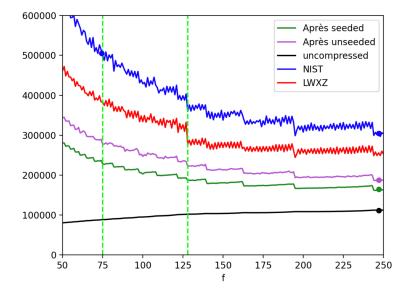
Result: We give a version of SQIsign with significantly faster verification, and comparable signing.

Norwegian University of Science and Technology

Why it works

Recall: $2^{f} | p + 1$

- Larger *f* from using extension fields.
- Signing still okay:
 - DftP tricks



- Increasing *f*:
 - 1.68x faster
- Optimised:
 - 2.65x faster
- Seeded (+10 B)
 - 3.04x faster
- Uncomp. (2x B)
 - 4.40x faster
- Most expensive stuff can be done as pre-computation
- Larger f also helps signing

Computing Orientations from the Endomorphism Ring of Supersingular Curves and Applications

Jonathan Komada Eriksen and Antonin Leroux

Problem: Given \mathfrak{D} and \mathcal{O} compute an optimal embedding $\iota: \mathfrak{D} \hookrightarrow \mathcal{O}$

$$\Leftrightarrow aX^2 + bY^2 + cZ^2 + eXY + fXZ + gYZ = d$$

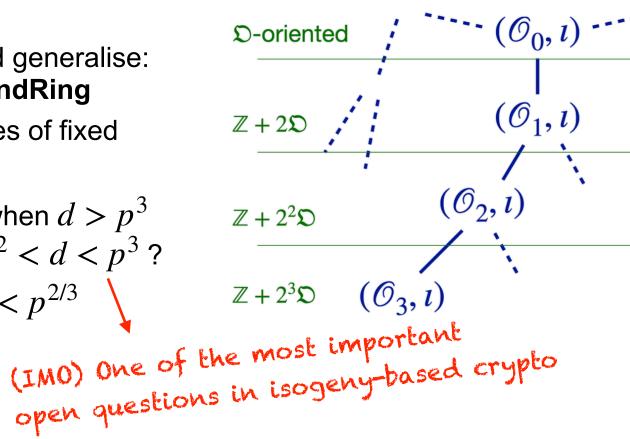
History: First solvable when $d < p^{1/2}$ Later improved to d < p

Result: Many improvements to this (e.g. solving for $d < p^{4/3}$). Further, we connect the theory to isogeny-problems.

Applications:

- Greatly simplify and generalise:
 Vectorisation -> EndRing
- Computing isogenies of fixed degree *d*.
 - Recall, KLPT: when $d > p^3$ What about $p^{1/2} < d < p^3$?
 - We solve for $d < p^{2/3}$

Norwegian University of Science and Technology



Generalized Class Group Actions on Oriented Elliptic Curves with Level Structure

Sarah Arpin, Wouter Castryck, Jonathan Komada Eriksen, Gioella Lorenzon and Fréderik Vercauteren

Group

Norwegian University of Science and Technology

Recall: $Cl(\mathfrak{O})$ acts freely and transitively on primitively \mathfrak{D} -oriented curves

Jo through this paper in this short time **Result:** A generalisation of this classical result

CLASSIC $Cl(\mathfrak{O}) := I(\mathfrak{O})/P(\mathfrak{O})$ (E, ι) NEW! Generalised class groups: (E, Γ, ι) , extra information Replace $P(\mathfrak{D})$ by a smaller subgroup

of Γ -level structure.

Acting on set

Admittedly, this talk has

hot covered enough background to

Technique

Lemma: Let $\mathfrak{D} \hookrightarrow \operatorname{End}(E)$ or $\mathfrak{D} = \operatorname{End}(E)$. Then $\mathfrak{D}/\mathfrak{m} \cong E[\mathfrak{m}]$ as \mathfrak{D} -modules for ideals $\mathfrak{m} \subset \mathfrak{D}$ (under certain conditions* on \mathfrak{m})

* Proper, and coprime to characteristic p of underlying field (of E) is sufficient

Main ideal: The isomorphism above allows us to connect gen. class groups $\Leftrightarrow H < GL(\mathfrak{O}/\mathfrak{m}) \Leftrightarrow \Gamma$ -level structures

