□ NTNU | Nor Scie # THE QUATERNION PROBLE Applications and A Jonathan Komada Eriksen ar January 22, 20 #### **Contents** #### Introduction #### **Optimal Embeddings and ideals** Prelims Ideals between oriented orders #### Relations to other problems Vectorisation Computing fixed-degree isogenies ## Algorithms for computing Optimal Embed Positive definite ternary quadratic forms Algorithms #### **Summary** A "magic trick" Previous KULB seminars: Deuring corres Passing between ideals and isogenies s In this talk, we add *orientations* into the p CSIDH, SCALLOP, ... Extra data of an imaginary quadratic orde We will look at orientations, purely on the Optimal embeddings, and quadratic/qualing the quaternion world, everything is expressed that the central theme of today: The quaternion world, everything is expressed to the central theme of today. #### **Problem** Given an order $\mathcal{O} \subset B_{p\,\infty}$ and an imaginary $q\iota$ optimal embedding $\iota: \hookrightarrow \mathcal{O}$ or decide none We'll finish / summarize with an "isogeny #### Introduction #### **Optimal Embeddings and ideals** **Prelims** Ideals between oriented orders #### Relations to other problems Vectorisation Computing fixed-degree isogenies ## Algorithms for computing Optimal Embed Positive definite ternary quadratic forms Algorithms #### **Summary** A "magic trick" # **Imaginary Quadratic Fields** $K := \mathbb{Q}(\sqrt{-d})$ for some $d \in \mathbb{Z}$. 2-dimensional \mathbb{Q} -algebra $\mathbb{Q} + \sqrt{-d}\mathbb{Q}$. An element $= x + \sqrt{-d}y$ has a conjuga Can define the trace $$tr(\) = \ + \ \dot{}$$ and norm $$n() = - = a$$ Every $$\in K$$ satisfies 2 $\operatorname{tr}(\) + n(\) :$ # **Imaginary Quadratic Fields** A lattice L in K is something of the form $$L = \beta_1 \mathbb{Z} +$$ where β_1, β_2 is a \mathbb{Q} -basis of K. An *order* is a lattice that is also a subri $1 \in$ and is closed under multiplication There is a maximal order $K \subset K$, containing The *conductor* of f := [K:K] is f := [K:K]. In th # **Example** The Eisenstein integers and a suborder in $\mathbb{Q}(\sqrt{-3})$. ## **Background** A quaternion algebra B over \mathbb{Q} is a 4-dim \mathbb{Q} -algebra. $\mathbb{Q} + \mathbb{Q} + \mathbf{j} \mathbb{Q} + \mathbf{k} \mathbb{Q}$. \mathbb{Q} -algebra. $\mathbb{Q} + \mathbb{Q} + \mathbb{J}\mathbb{Q} + \mathbb{K}\mathbb{Q}$. Multiplication defined by $^2 = q, \mathbf{j}^2 = q$ Define the conjugate of $= t + x + \mathbf{j}y + \mathbf{j}y$ The reduced trace of $$\in B_{p\,\infty}$$ is $\operatorname{trd}(\):=\ +$ The *reduced norm* of $\in B_{p \infty}$ is $$\operatorname{nrd}(\) := \ ^{-} = t^{2} + q_{0}$$ Every $$\in B_{p \infty}$$ satisfies $^2 \operatorname{trd}(\)$ + n #### **Lattices** A *lattice* L in $B_{p \infty}$ is something of the for $$L = \beta_1 \mathbb{Z} + \beta_2 \mathbb{Z} +$$ where $\beta_1, \beta_2, \beta_3, \beta_4$ is a \mathbb{Q} -basis of $B_{p \infty}$. An $order \mathcal{O}$ is a lattice that is also a subri There is a maximal order containing all c There is a maximal order containing all maximal orders in $B_{p \infty}$. NB Sometimes in this talk, we might refet they don't have full rank. # **Quaternion Orders** A "quaternion order" # **Quaternion Orders** A "quaternion order" (caveat: 3 = 4) # **Embeddings** The central theme of this talk is embedd Of course, $\iota(1_K)=1_{B_p}$ Let $K:=\mathbb{Q}(\omega)$. What should $\iota(\omega)$ be? Recall $\omega^2 - \mathrm{tr}(\omega)\omega + \mathrm{n}(\omega) = 0$. Enough to find $\in B_p$ with $\mathrm{trd}(\cdot) = \mathrm{tr}(\omega)\omega + \mathrm{n}(\omega)$ is uniquely defined by $\iota(\omega)$. # **Embedding** $$\iota:\mathbb{Q}(\sqrt{-1})\hookrightarrow B$$ defined by $\iota(\sqrt{-1})=i.$ # **Embedding** Adding $$\iota(K)$$, $K = \mathbb{Z}[\sqrt{1}]$. # Adding back the quaternion Order We add back the quaternion order \mathcal{O} , and can ask, what is $\iota(K) \cap \mathcal{O}$? # An optimal embedding $$\iota(K) \cap \mathcal{O} = \iota(\mathbb{Z} + 3 \quad K).$$ # **Primitively Oriented Orders** We say that $\iota: \hookrightarrow \mathcal{O}$ is an *optimal embed* $$\iota(K) \cap \mathcal{O} =$$ Given an embedding $\iota: K \hookrightarrow B_{p \infty}$, we caloriented order \mathcal{O} , if $\iota(K) \cap \mathcal{O} = \iota($ ## **Correspondence of ideals** Let (\mathcal{O}, ι) be a primitively -oriented order. Given an -ideal \mathfrak{l} , we can look at the co-Correspondingly, given a left \mathcal{O} -ideal I, where I is the contraction of I is the contraction of I in How are these operations related? #### **Proposition** Given an invertible -ideal I we have that Given a left \mathcal{O} -ideal I we have that $I \supseteq \mathcal{O}\langle$ Assume n(I) is prime. Three cases: $$\mathcal{O}\langle I \cap \iota(K)\rangle = \mathcal{O}\langle n(I)\rangle$$ Assume n(I) is prime. Three cases: Assume n(I) is prime. Three cases: $$\mathcal{O}\langle I \cap \iota(K) \rangle = \mathcal{O}\langle n(I) \rangle$$ *I* is a descending ide I is a descending ideal Assume n(I) is prime. Three cases: $$\mathcal{O}\langle I \cap \iota(K) \rangle = \mathcal{O}\langle n(I) \rangle$$ I is a descending ideal $$\mathcal{O}\langle I \cap \iota(K) \rangle = I$$ Assume n(I) is prime. Three cases: $$\mathcal{O}\langle I \cap \iota(K) \rangle = \mathcal{O}\langle n(I) \rangle$$ I is a descending ideal $$\mathcal{O}\langle I\cap\iota(K)\rangle=I$$ I is a horizontal ideal if n(I) f, the conductor. I is an ascending ideal if $n(I) \mid f$, the conductor. #### Introduction ## **Optimal Embeddings and ideals** Prelims Ideals between oriented orders #### Relations to other problems Vectorisation Computing fixed-degree isogenies # Algorithms for computing Optimal Embed Positive definite ternary quadratic forms #### **Summary** A "magic trick" # What is missing? Given two primitively -oriented maximal or them. Vectorization reduces to endomorphism From [CVP20]¹, this was first shown for Later generalised to *almost* arbitrary ord Exponential in the number of distinct p However, we can *almost* get it "for free". ¹Rational isogenies from irrational endomorphisms ¹Orientations and the supersingular endomorphism #### A new reduction The new reduction follows from the following #### **Proposition** Let $(\mathcal{O}_1, \iota), (\mathcal{O}_2, \iota)$ be two primitively -oriented I is horizontal. So, given $(\mathcal{O}_1, \iota_1), (\mathcal{O}_2, \iota_2)$, we need only fix th Find an element $\beta \in B_{p,\infty}$ such that $(\beta \mathcal{O}_2)$ Solve $\beta \iota_2(\omega)$ $\iota_1(\omega)\beta = 0$. Compute the connecting ideal $I := \mathcal{O}_1 \mathcal{O}_2$ Find the solution as $\iota_1(\mathfrak{l}) = I \cap \iota_1(K)$. Computing isogenies of fixed degree *d*: Complook for ideals equivalent to the connecting is Let I be the connecting ideal. $d < p^{1/2}$: Compute reduced basis of I. $d > p^{15/4}$: KLPT. For d in between here, the problem seen Connected to the quaternion embedding ____ ³Improved algorithms for finding fixed-degree isogocurves We are trying to find an ideal equivalent to $\mathcal{O}_0\mathcal{O}$ of norm d. \mathcal{O} is primitively oriented by an ideal I of norm d induces a (not necessarily primitive) $\mathbb{Z}+d$ -orientation on $\mathcal{O}_R(I)$ D-orie $\mathbb{Z} + 2\mathfrak{T}$ $7 + 2^{2}$ $\mathbb{Z} + 2^3$ $\mathbb{Z}[i]$ -or Important special case: \mathcal{O}_0 oriented by $\mathbb{Z}[i]$. Computed a primitive $\mathbb{Z}[2^5]$ -orientation on \mathcal{O} . $\mathbb{Z}[2^5i]$ - Important special case: \mathcal{O}_0 oriented by $\mathbb{Z}[i]$. Computed a primitive $\mathbb{Z}[2^5]$ -orientation on \mathcal{O} . The ascending ideal is easily computed. $\mathbb{Z}[i]$ -0 $\mathbb{Z}[2i]$ -0 $\mathbb{Z}[2^2i]$ $\mathbb{Z}[2^3i]$ - $\mathbb{Z}[2^4i]$ - $\mathbb{Z}[2^5i]$ - Later: can compute embeddings of int whenever $disc(\) < p^{4/3}$. Corollary: We can compute ideals of nor they exist (with \mathcal{O}_0 special). In general: computing these ideals of neembeddings of $\mathbb{Z}[di]$. For generic \mathcal{O}_0 , the reduction only works computing optimal embeddings up to $\mathrm{d}\mathrm{i}$ #### Introduction #### **Optimal Embeddings and ideals** Prelims Ideals between oriented orders #### Relations to other problems Vectorisation Computing fixed-degree isogenies # Algorithms for computing Optimal Embed Positive definite ternary quadratic forms Algorithms #### **Summary** A "magic trick" # Relation to ternary quadratic form In general the quaternion embedding proble Wlog. we can assume that $tr(\)=0$, so Voigt, Chp 22: There is a discriminant-present that the control of Quaternion orders } ⇔ T up to isomorphism } ⇔ L that can be given by sending $${\cal O}$$ to the no i.e. if $\beta_1, \beta_2, \beta_3$ is a basis of (\mathcal{O}) , the ass $Q(x, y, z) := \operatorname{nrd}(x\beta_1 + y\beta_2 + z\beta_3)$. Our case: The quaternion embedding pr by a positive definite ternary quadratic for # A very easy special case algorithm From this point forward, we will think of the order $\mathcal{O} \subset B_{p \infty}$ and an integer n, find $\in \mathcal{O}$ Special case: Let $^2=1, \mathbf{j}^2=p$, and $\mathcal{O}=\mathbb{Z}$ The associated norm form is Q(x,y,z)= Solve it modulo p to find x_0 , with $x_0^2\equiv n$ Find y, z satisfying $y^2 + z^2 = (n (x_0 + k_I))$ Cornacchia. Then $= (x_0 + kp) + \mathbf{j}y + \mathbf{k}z$ is a solutio ## **B-b-b-bonus application** Finding a curve oriented by a given order : $= \mathbb{Z} + f\mathbb{Z}[i]$, this is solved by Set Computes a random decending f-isoge an endomorphism of degree fN with Λ For general, another existing algorithm quaternion side, then standard KLPT + tr This used to be in Séta's key generation New algorithm: "as efficient as the first, I > Compute an embedding of $\mathbb{Z} + q$ in \mathcal{O} a optimal embedding of $\mathbb{Z} + q$ into En Compute the ascending isogeny of degr ## The generic case Given a "random" quaternion order \mathcal{O} , comp $\operatorname{nrd}(\)=n.$ First result [Wes22]: Computing a reduce (Really works up to $n < p^{2/3}$). Again [BKM23]: Techniques applied to the works conjecturally up to $n < p^{4/5}$. This summer [ACD23]⁴: Generic algorith cases. New: Improving previous algorithm up to orders, not just maximal) with the same improvements assuming factorisation. ⁴Finding orientations of supersingular elliptic curves # A first algorithm - HNF basis Given a quaternion order \mathcal{O} , compute an ele $$\mathcal{O} = \langle e_{00} + e_{01} + e_{01} \rangle$$ $$e_{11} + e_{11}$$ Solving for trace and mod p, we get $_0 =$ For increasing k, solve for y, z, such that solution $_0 + _{-1}$ # Improving the HNF basis algorithm Notice that when $_0$ is set, we are lookin $$_1 = k \cdot p\beta_2 + y \cdot$$ This defines a new lattice Λ in $B_{p\infty}$. In fact, this lattice Λ is exactly the trace- \mathcal{O} -ideal of norm p. Whenever $n < p^{4/3}$, we have that $_1$ is th # A new algorithm using a reduced b For any solution , and any $\beta \in \mathcal{O} \setminus \mathbb{Z}[\]$, the revealed mod $= \operatorname{discrd}(\mathcal{O})$ (and upper bound by computing the discriminant of Let $1, \beta_1, \beta_2, \beta_3$ be a reduced basis of \mathcal{O} . I Again, for maximal orders, this "usually' is known exactly, and one finds by soli Exploit the fact that this works for any or # Similarity with CVP improvement? Compute any solution 0 with $$\operatorname{trd}(\ _{0}\beta_{i}) = \operatorname{trd}(\ \beta$$ Again: Look for an $_1 := _0$ in the un Hence, given any (not necessarily reduce same complexity by doing a CVP search ## Pathological cases All these except HNF-algorithm, relies or somewhat uniform $$1, \beta_1, \beta_2, \beta_3$$, with $\operatorname{nrd}(\beta_i) \approx p^{2/3}$ Previous two: Runtime dominated by ${ m max}$ However, with factorization, we get a run Again, reduces to solving a principal qua Unlike the HNF-basis method, there's se this. #### Introduction ### **Optimal Embeddings and ideals** Prelims Ideals between oriented orders #### Relations to other problems Vectorisation Computing fixed-degree isogenies ## Algorithms for computing Optimal Embed Positive definite ternary quadratic forms Algorithms #### **Summary** A "magic trick" ## A magic trick Just like a magic trick, this is as cool as it Let $p \equiv 11 \pmod{12}$. We compute the sh and $j(E_2) = 1728$ in the 2-isogeny graph. ## A magic trick Let $p = 2^{55} \cdot 3$ $1 \equiv 11 \pmod{12}$. We wor $$B_{p\,\infty} = \mathbb{Q} + \mathbb{Q} +$$ where $^2 = 1$ and $\mathbf{j}^2 = p$. The standard order $\mathcal{O} \cong \operatorname{End}(F_2)$ The standard order $\mathcal{O} \cong \operatorname{End}(E_2)$ is $$\mathbb{Z} + \mathbb{Z} + \frac{+\mathbf{j}}{2} \mathbb{Z}$$ We want the smallest k such that $\mathbb{Z}[2^k\omega]$ # A magic trick For k = 54, we find the embedding $$\iota(2^{54}\omega) = 9007199254740992 + \frac{1992470423}{2}$$ Translating the ideal $I:=\mathcal{O}\langle\iota(2^{54}\omega),2^{54} angle$ $$E_2: y^2 = x^3$$ reveals that the point $K \in \mathcal{E}_2$ with $$x(K) = 86739268981076750i + 692$$ generates a 2^{54} -isogeny $\varphi:E_2 o E_1$ with Thank you for you