□ NTNU | Nor Scie

THE QUATERNION PROBLE

Applications and A

Jonathan Komada Eriksen ar

January 22, 20

Contents

Introduction

Optimal Embeddings and ideals

Prelims

Ideals between oriented orders

Relations to other problems

Vectorisation

Computing fixed-degree isogenies

Algorithms for computing Optimal Embed

Positive definite ternary quadratic forms Algorithms

Summary

A "magic trick"

Previous KULB seminars: Deuring corres Passing between ideals and isogenies s In this talk, we add *orientations* into the p CSIDH, SCALLOP, ...

Extra data of an imaginary quadratic orde

We will look at orientations, purely on the Optimal embeddings, and quadratic/qualing the quaternion world, everything is expressed that the central theme of today: The quaternion world, everything is expressed to the central theme of today.

Problem

Given an order $\mathcal{O} \subset B_{p\,\infty}$ and an imaginary $q\iota$ optimal embedding $\iota: \hookrightarrow \mathcal{O}$ or decide none

We'll finish / summarize with an "isogeny

Introduction

Optimal Embeddings and ideals

Prelims

Ideals between oriented orders

Relations to other problems

Vectorisation

Computing fixed-degree isogenies

Algorithms for computing Optimal Embed

Positive definite ternary quadratic forms Algorithms

Summary

A "magic trick"

Imaginary Quadratic Fields

 $K := \mathbb{Q}(\sqrt{-d})$ for some $d \in \mathbb{Z}$.

2-dimensional \mathbb{Q} -algebra $\mathbb{Q} + \sqrt{-d}\mathbb{Q}$.

An element $= x + \sqrt{-d}y$ has a conjuga Can define the trace

$$tr(\) = \ + \ \dot{}$$

and norm

$$n() = - = a$$

Every
$$\in K$$
 satisfies 2 $\operatorname{tr}(\) + n(\) :$

Imaginary Quadratic Fields

A lattice L in K is something of the form

$$L = \beta_1 \mathbb{Z} +$$

where β_1, β_2 is a \mathbb{Q} -basis of K.

An *order* is a lattice that is also a subri $1 \in$ and is closed under multiplication

There is a maximal order $K \subset K$, containing

The *conductor* of f := [K:K] is f := [K:K]. In th

Example

The Eisenstein integers and a suborder in $\mathbb{Q}(\sqrt{-3})$.

Background

A quaternion algebra B over \mathbb{Q} is a 4-dim \mathbb{Q} -algebra. $\mathbb{Q} + \mathbb{Q} + \mathbf{j} \mathbb{Q} + \mathbf{k} \mathbb{Q}$.

 \mathbb{Q} -algebra. $\mathbb{Q} + \mathbb{Q} + \mathbb{J}\mathbb{Q} + \mathbb{K}\mathbb{Q}$.

Multiplication defined by $^2 = q, \mathbf{j}^2 = q$

Define the conjugate of $= t + x + \mathbf{j}y + \mathbf{j}y$

The reduced trace of
$$\in B_{p\,\infty}$$
 is $\operatorname{trd}(\):=\ +$

The *reduced norm* of $\in B_{p \infty}$ is

$$\operatorname{nrd}(\) := \ ^{-} = t^{2} + q_{0}$$

Every
$$\in B_{p \infty}$$
 satisfies $^2 \operatorname{trd}(\)$ + n

Lattices

A *lattice* L in $B_{p \infty}$ is something of the for

$$L = \beta_1 \mathbb{Z} + \beta_2 \mathbb{Z} +$$

where $\beta_1, \beta_2, \beta_3, \beta_4$ is a \mathbb{Q} -basis of $B_{p \infty}$.

An $order \mathcal{O}$ is a lattice that is also a subri There is a maximal order containing all c

There is a maximal order containing all maximal orders in $B_{p \infty}$.

NB Sometimes in this talk, we might refet they don't have full rank.

Quaternion Orders

A "quaternion order"

Quaternion Orders

A "quaternion order" (caveat: 3 = 4)

Embeddings

The central theme of this talk is embedd Of course, $\iota(1_K)=1_{B_p}$ Let $K:=\mathbb{Q}(\omega)$. What should $\iota(\omega)$ be? Recall $\omega^2 - \mathrm{tr}(\omega)\omega + \mathrm{n}(\omega) = 0$. Enough to find $\in B_p$ with $\mathrm{trd}(\cdot) = \mathrm{tr}(\omega)\omega + \mathrm{n}(\omega)$ is uniquely defined by $\iota(\omega)$.

Embedding

$$\iota:\mathbb{Q}(\sqrt{-1})\hookrightarrow B$$
 defined by $\iota(\sqrt{-1})=i.$

Embedding

Adding
$$\iota(K)$$
, $K = \mathbb{Z}[\sqrt{1}]$.

Adding back the quaternion Order

We add back the quaternion order \mathcal{O} , and can ask, what is $\iota(K) \cap \mathcal{O}$?

An optimal embedding

$$\iota(K) \cap \mathcal{O} = \iota(\mathbb{Z} + 3 \quad K).$$

Primitively Oriented Orders

We say that $\iota: \hookrightarrow \mathcal{O}$ is an *optimal embed*

$$\iota(K) \cap \mathcal{O} =$$

Given an embedding $\iota: K \hookrightarrow B_{p \infty}$, we caloriented order \mathcal{O} , if $\iota(K) \cap \mathcal{O} = \iota($

Correspondence of ideals

Let (\mathcal{O}, ι) be a primitively -oriented order.

Given an -ideal \mathfrak{l} , we can look at the co-Correspondingly, given a left \mathcal{O} -ideal I, where I is the contraction of I is the contraction of I in I

How are these operations related?

Proposition

Given an invertible -ideal I we have that

Given a left \mathcal{O} -ideal I we have that $I \supseteq \mathcal{O}\langle$

Assume n(I) is prime. Three cases:

$$\mathcal{O}\langle I \cap \iota(K)\rangle = \mathcal{O}\langle n(I)\rangle$$

Assume n(I) is prime. Three cases:

Assume n(I) is prime. Three cases:

$$\mathcal{O}\langle I \cap \iota(K) \rangle = \mathcal{O}\langle n(I) \rangle$$
I is a descending ide

I is a descending ideal

Assume n(I) is prime. Three cases:

$$\mathcal{O}\langle I \cap \iota(K) \rangle = \mathcal{O}\langle n(I) \rangle$$

I is a descending ideal

$$\mathcal{O}\langle I \cap \iota(K) \rangle = I$$

Assume n(I) is prime. Three cases:

$$\mathcal{O}\langle I \cap \iota(K) \rangle = \mathcal{O}\langle n(I) \rangle$$

I is a descending ideal

$$\mathcal{O}\langle I\cap\iota(K)\rangle=I$$

I is a horizontal ideal if n(I) f, the conductor. I is an ascending ideal if $n(I) \mid f$, the conductor.

Introduction

Optimal Embeddings and ideals

Prelims
Ideals between oriented orders

Relations to other problems

Vectorisation Computing fixed-degree isogenies

Algorithms for computing Optimal Embed Positive definite ternary quadratic forms

Summary

A "magic trick"

What is missing?

Given two primitively -oriented maximal or them.

Vectorization reduces to endomorphism

From [CVP20]¹, this was first shown for

Later generalised to *almost* arbitrary ord Exponential in the number of distinct p

However, we can *almost* get it "for free".

¹Rational isogenies from irrational endomorphisms ¹Orientations and the supersingular endomorphism

A new reduction

The new reduction follows from the following

Proposition

Let $(\mathcal{O}_1, \iota), (\mathcal{O}_2, \iota)$ be two primitively -oriented I is horizontal.

So, given $(\mathcal{O}_1, \iota_1), (\mathcal{O}_2, \iota_2)$, we need only fix th Find an element $\beta \in B_{p,\infty}$ such that $(\beta \mathcal{O}_2)$

Solve $\beta \iota_2(\omega)$ $\iota_1(\omega)\beta = 0$.

Compute the connecting ideal $I := \mathcal{O}_1 \mathcal{O}_2$

Find the solution as $\iota_1(\mathfrak{l}) = I \cap \iota_1(K)$.

Computing isogenies of fixed degree *d*: Complook for ideals equivalent to the connecting is

Let I be the connecting ideal.

 $d < p^{1/2}$: Compute reduced basis of I.

 $d > p^{15/4}$: KLPT.

For d in between here, the problem seen Connected to the quaternion embedding

³Improved algorithms for finding fixed-degree isogocurves

We are trying to find an ideal equivalent to $\mathcal{O}_0\mathcal{O}$ of norm d. \mathcal{O} is primitively oriented by an ideal I of norm d induces a (not necessarily primitive) $\mathbb{Z}+d$ -orientation on $\mathcal{O}_R(I)$

D-orie

 $\mathbb{Z} + 2\mathfrak{T}$

 $7 + 2^{2}$

 $\mathbb{Z} + 2^3$

 $\mathbb{Z}[i]$ -or

Important special case: \mathcal{O}_0 oriented by $\mathbb{Z}[i]$. Computed a primitive $\mathbb{Z}[2^5]$ -orientation on \mathcal{O} .

 $\mathbb{Z}[2^5i]$ -

Important special case: \mathcal{O}_0 oriented by $\mathbb{Z}[i]$.

Computed a primitive $\mathbb{Z}[2^5]$ -orientation on \mathcal{O} .

The ascending ideal is easily computed.

 $\mathbb{Z}[i]$ -0 $\mathbb{Z}[2i]$ -0

 $\mathbb{Z}[2^2i]$

 $\mathbb{Z}[2^3i]$ - $\mathbb{Z}[2^4i]$ -

 $\mathbb{Z}[2^5i]$ -

Later: can compute embeddings of int whenever $disc(\) < p^{4/3}$.

Corollary: We can compute ideals of nor they exist (with \mathcal{O}_0 special).

In general: computing these ideals of neembeddings of $\mathbb{Z}[di]$.

For generic \mathcal{O}_0 , the reduction only works computing optimal embeddings up to $\mathrm{d}\mathrm{i}$

Introduction

Optimal Embeddings and ideals

Prelims

Ideals between oriented orders

Relations to other problems

Vectorisation

Computing fixed-degree isogenies

Algorithms for computing Optimal Embed

Positive definite ternary quadratic forms Algorithms

Summary

A "magic trick"

Relation to ternary quadratic form

In general the quaternion embedding proble

Wlog. we can assume that $tr(\)=0$, so Voigt, Chp 22: There is a discriminant-present that the control of the

Quaternion orders } ⇔ T up to isomorphism } ⇔ L

that can be given by sending
$${\cal O}$$
 to the no

i.e. if $\beta_1, \beta_2, \beta_3$ is a basis of (\mathcal{O}) , the ass $Q(x, y, z) := \operatorname{nrd}(x\beta_1 + y\beta_2 + z\beta_3)$.

Our case: The quaternion embedding pr by a positive definite ternary quadratic for

A very easy special case algorithm

From this point forward, we will think of the order $\mathcal{O} \subset B_{p \infty}$ and an integer n, find $\in \mathcal{O}$

Special case: Let $^2=1, \mathbf{j}^2=p$, and $\mathcal{O}=\mathbb{Z}$

The associated norm form is Q(x,y,z)= Solve it modulo p to find x_0 , with $x_0^2\equiv n$

Find y, z satisfying $y^2 + z^2 = (n (x_0 + k_I))$ Cornacchia.

Then $= (x_0 + kp) + \mathbf{j}y + \mathbf{k}z$ is a solutio

B-b-b-bonus application

Finding a curve oriented by a given order : $= \mathbb{Z} + f\mathbb{Z}[i]$, this is solved by Set Computes a random decending f-isoge an endomorphism of degree fN with Λ For general, another existing algorithm quaternion side, then standard KLPT + tr This used to be in Séta's key generation New algorithm: "as efficient as the first, I

> Compute an embedding of $\mathbb{Z} + q$ in \mathcal{O} a optimal embedding of $\mathbb{Z} + q$ into En Compute the ascending isogeny of degr

The generic case

Given a "random" quaternion order \mathcal{O} , comp $\operatorname{nrd}(\)=n.$

First result [Wes22]: Computing a reduce (Really works up to $n < p^{2/3}$).

Again [BKM23]: Techniques applied to the works conjecturally up to $n < p^{4/5}$.

This summer [ACD23]⁴: Generic algorith cases.

New: Improving previous algorithm up to orders, not just maximal) with the same improvements assuming factorisation.

⁴Finding orientations of supersingular elliptic curves

A first algorithm - HNF basis

Given a quaternion order \mathcal{O} , compute an ele

$$\mathcal{O} = \langle e_{00} + e_{01} + e_{01} \rangle$$

$$e_{11} + e_{11}$$

Solving for trace and mod p, we get $_0 =$ For increasing k, solve for y, z, such that solution $_0 + _{-1}$

Improving the HNF basis algorithm

Notice that when $_0$ is set, we are lookin

$$_1 = k \cdot p\beta_2 + y \cdot$$

This defines a new lattice Λ in $B_{p\infty}$. In fact, this lattice Λ is exactly the trace- \mathcal{O} -ideal of norm p.

Whenever $n < p^{4/3}$, we have that $_1$ is th

A new algorithm using a reduced b

For any solution , and any $\beta \in \mathcal{O} \setminus \mathbb{Z}[\]$, the revealed mod $= \operatorname{discrd}(\mathcal{O})$ (and upper bound by computing the discriminant of Let $1, \beta_1, \beta_2, \beta_3$ be a reduced basis of \mathcal{O} . I

Again, for maximal orders, this "usually'

is known exactly, and one finds by soli

Exploit the fact that this works for any or

Similarity with CVP improvement?

Compute any solution 0 with

$$\operatorname{trd}(\ _{0}\beta_{i}) = \operatorname{trd}(\ \beta$$

Again: Look for an $_1 := _0$ in the un Hence, given any (not necessarily reduce

same complexity by doing a CVP search

Pathological cases

All these except HNF-algorithm, relies or somewhat uniform

$$1, \beta_1, \beta_2, \beta_3$$
, with $\operatorname{nrd}(\beta_i) \approx p^{2/3}$

Previous two: Runtime dominated by ${
m max}$ However, with factorization, we get a run

Again, reduces to solving a principal qua Unlike the HNF-basis method, there's se

this.

Introduction

Optimal Embeddings and ideals

Prelims

Ideals between oriented orders

Relations to other problems

Vectorisation

Computing fixed-degree isogenies

Algorithms for computing Optimal Embed

Positive definite ternary quadratic forms Algorithms

Summary

A "magic trick"

A magic trick

Just like a magic trick, this is as cool as it Let $p \equiv 11 \pmod{12}$. We compute the sh and $j(E_2) = 1728$ in the 2-isogeny graph.

A magic trick

Let $p = 2^{55} \cdot 3$ $1 \equiv 11 \pmod{12}$. We wor

$$B_{p\,\infty} = \mathbb{Q} + \mathbb{Q} +$$

where $^2 = 1$ and $\mathbf{j}^2 = p$. The standard order $\mathcal{O} \cong \operatorname{End}(F_2)$

The standard order $\mathcal{O} \cong \operatorname{End}(E_2)$ is

$$\mathbb{Z} + \mathbb{Z} + \frac{+\mathbf{j}}{2} \mathbb{Z}$$

We want the smallest k such that $\mathbb{Z}[2^k\omega]$

A magic trick

For k = 54, we find the embedding

$$\iota(2^{54}\omega) = 9007199254740992 + \frac{1992470423}{2}$$

Translating the ideal $I:=\mathcal{O}\langle\iota(2^{54}\omega),2^{54}
angle$

$$E_2: y^2 = x^3$$

reveals that the point $K \in \mathcal{E}_2$ with

$$x(K) = 86739268981076750i + 692$$

generates a 2^{54} -isogeny $\varphi:E_2 o E_1$ with

Thank you for you