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Post-quantum crypto from elliptic curves
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The endomorphism ring

ℤ[π] ⊆ End(E)

E/𝔽53 : y2 = x3 + 1
It turns out that , thusπ2 = [−p]

ι : ℤ [ −p] ↪ End(E)

For
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Post-Quantum Diffie-Hellman??

⋆ : Cl(𝔒) × Ell → Ell
𝔞 ⋆ E = ϕ𝔞(E)

Assume , for an imaginary quadratic order .  
There is a free and transitive group action

𝔒 = End(E) 𝔒



Post-Quantum Diffie-Hellman??

y2 = x3 + 1

y2 = x3 + 26

y2 = x3 + 32x + 6

y2 = x3 + 38x + 22

y2 = x3 + 24x + 42

y2 = x3 + 22x + 5



Post-Quantum Diffie-Hellman??

y2 = x3 + 1

y2 = x3 + 26

y2 = x3 + 32x + 6

y2 = x3 + 38x + 22

y2 = x3 + 24x + 42

y2 = x3 + 22x + 5



Post-Quantum Diffie-Hellman??

y2 = x3 + 1

y2 = x3 + 26

y2 = x3 + 32x + 6

y2 = x3 + 38x + 22

y2 = x3 + 24x + 42

y2 = x3 + 22x + 5



Post-Quantum Diffie-Hellman??

y2 = x3 + 1

y2 = x3 + 26

y2 = x3 + 32x + 6

y2 = x3 + 38x + 22

y2 = x3 + 24x + 42

y2 = x3 + 22x + 5



For our , E/𝔽53 ℤ[π] ⊊ End(E)

Confession: I've been lying...

ω((x, y)) = (ζx, − y)

π ∘ ω = − ω ∘ π



For our , E/𝔽53 ℤ[π] ⊊ End(E)

Confession: I've been lying...

ω((x, y)) = (ζx, − y)

π ∘ ω = − ω ∘ π



A quaternion algebra (over ) is something of the formℚ

Quaternion Algebras

B = ℚ + ℚi + ℚj + ℚk

i2 = a, j2 = b, ij = k = − ji
Satisfying

 is a (maximal) order in a quaternion algebra!ℤ⟨π, ω⟩



A quaternion algebra (over ) is something of the formℚ

Quaternion Algebras

B = ℚ + ℚi + ℚj + ℚk

i2 = a, j2 = b, ij = k = − ji
Satisfying

 is a (maximal) order in a quaternion algebra!ℤ⟨π, ω⟩



B vs. K
(Positive definite) quaternion algebra    |     (Imaginary quadratic) number field



B vs. K
(Positive definite) quaternion algebra    |     (Imaginary quadratic) number field



B vs. K
(Positive definite) quaternion algebra    |     (Imaginary quadratic) number field



B vs. K
(Positive definite) quaternion algebra    |     (Imaginary quadratic) number field



B vs. K
(Positive definite) quaternion algebra    |     (Imaginary quadratic) number field



The Deuring Correspondence
Let .End(E) = 𝒪 ⊂ Bp,∞

There is an equivalence of categories

F : SS𝔽p
→ LeftId(𝒪)



The Deuring Correspondence
Let .End(E) = 𝒪 ⊂ Bp,∞

There is an equivalence of categories

F : SS𝔽p
→ LeftId(𝒪)



The Deuring Correspondence
Let .End(E) = 𝒪 ⊂ Bp,∞

There is an equivalence of categories

F : SS𝔽p
→ LeftId(𝒪)



The Deuring Correspondence
Let .End(E) = 𝒪 ⊂ Bp,∞

There is an equivalence of categories

F : SS𝔽p
→ LeftId(𝒪)



Application 1: Generate a  
supersingular curve with End(E) = 𝒪
Goal: Let  be a maximal order.  
Find  with 

𝒪 ⊂ Bp,∞
E/𝔽p End(E) = 𝒪



Application 1: Generate a  
supersingular curve with End(E) = 𝒪
Goal: Let  be a maximal order.  
Find  with 

𝒪 ⊂ Bp,∞
E/𝔽p End(E) = 𝒪



Application 1: Generate a  
supersingular curve with End(E) = 𝒪
Goal: Let  be a maximal order.  
Find  with 

𝒪 ⊂ Bp,∞
E/𝔽p End(E) = 𝒪



Application 1: Generate a  
supersingular curve with End(E) = 𝒪
Goal: Let  be a maximal order.  
Find  with 

𝒪 ⊂ Bp,∞
E/𝔽p End(E) = 𝒪



Application 1: Generate a  
supersingular curve with End(E) = 𝒪
Goal: Let  be a maximal order.  
Find  with 

𝒪 ⊂ Bp,∞
E/𝔽p End(E) = 𝒪



Application: SQIsign

Epk

Ecom

Echal 𝒪pk   J ∼ IchalϕJ

Goal: Prove that you know  (without revealing it)End(Epk)



Application: SQIsign

Epk

Ecom

Echal 𝒪pk   J ∼ IchalϕJ

Goal: Prove that you know  (without revealing it)End(Epk)



Application: SQIsign

Epk

Ecom

Echal 𝒪pk   J ∼ IchalϕJ

Goal: Prove that you know  (without revealing it)End(Epk)



Application: SQIsign

Epk

Ecom

Echal 𝒪pk   J ∼ IchalϕJ

Goal: Prove that you know  (without revealing it)End(Epk)



Application: SQIsign

Epk

Ecom

Echal 𝒪pk   J ∼ IchalϕJ

Goal: Prove that you know  (without revealing it)End(Epk)



Application: SQIsign

Epk

Ecom

Echal 𝒪pk   J ∼ IchalϕJ

Goal: Prove that you know  (without revealing it)End(Epk)



Application: SQIsign

Epk

Ecom

Echal 𝒪pk   J ∼ IchalϕJ

Goal: Prove that you know  (without revealing it)End(Epk)



Application: SQIsign

Epk

Ecom

Echal 𝒪pk   J ∼ IchalϕJ

Goal: Prove that you know  (without revealing it)End(Epk)



Current Trends and Open Problems



Abelian Varieties
An abelian variety is a smooth, projective curves of genus 1

variety, with a "group structure" 



Abelian Varieties
An abelian variety is a smooth, projective curves of genus 1

variety, with a "group structure" 



Abelian Varieties
An abelian variety is a smooth, projective curves of genus 1

variety, with a "group structure" 



Abelian Varieties
An abelian variety is a smooth, projective curves of genus 1

variety, with a "group structure" 



Abelian Varieties
An abelian variety is a smooth, projective curves of genus 1

variety, with a "group structure" 



Abelian Varieties
An abelian variety is a smooth, projective curves of genus 1

variety, with a "group structure" 

Dimension 2:  
All Abelian surfaces are either products of elliptic curves,  
or jacobians of genus 2 curves

Dimension 4+: products and jacobians no longer enough



Abelian Varieties
An abelian variety is a smooth, projective curves of genus 1

variety, with a "group structure" 

Dimension 2:  
All Abelian surfaces are either products of elliptic curves,  
or jacobians of genus 2 curves

Dimension 4+: products and jacobians no longer enough



Abelian Varieties
An abelian variety is a smooth, projective curves of genus 1

variety, with a "group structure" 

Dimension 2:  
All Abelian surfaces are either products of elliptic curves,  
or jacobians of genus 2 curves

Dimension 4+: products and jacobians no longer enough



Abelian Varieties
Pre-2021: Could only compute  if  was smoothϕ deg ϕ



Abelian Varieties
Pre-2021: Could only compute  if  was smoothϕ deg ϕ

Post-2021: Can compute  of any degree by embedding 
                    into an isogeny in higher dimension.                     

ϕ



Abelian Varieties
Pre-2021: Could only compute  if  was smoothϕ deg ϕ

Post-2021: Can compute  of any degree by embedding 
                    into an isogeny in higher dimension.                     

ϕ



Abelian Varieties
Pre-2021: Could only compute  if  was smoothϕ deg ϕ

Post-2021: Can compute  of any degree by embedding 
                    into an isogeny in higher dimension.                     

ϕ



Abelian Varieties
Pre-2021: Could only compute  if  was smoothϕ deg ϕ

Post-2021: Can compute  of any degree by embedding 
                    into an isogeny in higher dimension.                     

ϕ



Example 1: SQIsign
Before: The response  had to have smooth degree. 
              This complicated things immensely

ϕJ

Now: Return any  embedded in dimension 2.             ϕJ

Epk

Ecom

Echal 𝒪pk   J ∼ IchalϕJ

Result: SQIsign really looking promising for standardisation‽



Example 1: Group Actions
Before: Could only compute this group action for ideals  
              of smooth norm.

Now (one month ago): Compute this action for any ideal 
                                       by embedding in dimension 4.              

Result: Way more Diffie-Hellman based protocols immediately 
             get post-quantum analogues

⋆ : Cl(𝔒) × Ell → Ell
𝔞 ⋆ E = ϕ𝔞(E)
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Thank you!
Questions?


