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Diffie-Hellman
A Cornerstone of Modern Cryptography

In 1976, Diffie and Hellman came up with a way for two parties to arrive at a shared
secret, only communicating over a public channel.

Setup
Fix a cyclic group G = (g) of order N.

Alice Bob
a<s$Z/NZ g
\}
gb b s Z/NZ
& —
key = (g")° key = (g%)°
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Discrete logarithm

Setup
Fix a cyclic group G = (g) of order N.
Alice Bob
a<s$Z/NZ g
T b<«s$Z/NZ
key = (g°)° key = (8)°

The discrete logarithm problem
Given an element X € G, compute X € Z such that g¥ = X.
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Discrete logarithm

Setup
Fix a cyclic group G = (g) of order N.
Alice Bob
a<s$Z/NZ g
T b<«s$Z/NZ
key = (g°)° key = (8)°

The discrete logarithm problem
Given an element X € G, compute X € Z such that g¥ = X.

The computational Diffie-Hellman problem
Given g,g% g% € G, compute g% ¢ G.
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Reductions

Relating problems
Given Problem 1 and Problem 2, how do we prove which one is harder?

!Something which takes an instance of Problem 1 and spits out an answer in polynomial time.
Importantly, we do not care how.
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Reductions

Relating problems
Given Problem 1 and Problem 2, how do we prove which one is harder?

Oracles and reductions!

Assume we are given an oracle’ O for Problem 1, we say that Problem 2 reduces to
Problem 1, if we can use O to solve Problem 2 (in polynomial time).

Intuitively, Problem 2 can not be harder than Problem 1.

!Something which takes an instance of Problem 1 and spits out an answer in polynomial time.
Importantly, we do not care how.
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Reductions

Relating problems
Given Problem 1 and Problem 2, how do we prove which one is harder?

Oracles and reductions!

Assume we are given an oracle’ O for Problem 1, we say that Problem 2 reduces to
Problem 1, if we can use O to solve Problem 2 (in polynomial time).

Intuitively, Problem 2 can not be harder than Problem 1.

Equivalent problems

If Problem 1 reduces to Problem 2 AND Problem 2 reduces to Problem 1, we say that
these problems are equivalent.

!Something which takes an instance of Problem 1 and spits out an answer in polynomial time.
Importantly, we do not care how.
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A Trivial Reduction

The discrete logarithm problem (DLOG)
Given an element X € G, compute X € Z such that g¥ = X.

The computational Diffie-Hellman (CDH) problem
Given g,89,8" € G, compute g% € G.

Observation
CDH reduces to DLOG.
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A Trivial Reduction

The discrete logarithm problem (DLOG)
Given an element X € G, compute X € Z such that g¥ = X.

The computational Diffie-Hellman (CDH) problem
Given g,89,8" € G, compute g% € G.

Observation
CDH reduces to DLOG.

Proof.
Given an instance g,89 g% € G of CDH, and a oracle O for DLOG, get a + O(g,g%),
and output (g?)?. O
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Summary

Goal of lecture
» So far, we have that CDH reduces to DLOG.
» This does not really say much about the security of Diffie-Hellman...
» What we really want is a reduction in the OTHER direction.
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Pohlig-Hellman

The discrete logarithm (DLOG) problem

Let G = (g), of order N = pT'pS? - - - p", where p; are prime powers. Given an element
X € G, compute X € Z such that g¥ = X.

Pohlig-Hellman
Reduces this to computing DLOGs in groups of order p;.

» Solving discrete logs in groups of prime power order.

» Combining results using the chinese remainder theorem.
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Pohlig-Hellman - Prime power case

DLOG - Special case
Let G = (g), of order N = p€, where p is prime. Given an element X € G, compute
X € Z such that g¥ = X.

Algorithm

Solving the above reduces to solving DLOG in groups of order p, by iteratively
computing coefficients in the p-adic expansion of X.

» Write X = Xg + X1 + - -+ + p® 1Xe_1 in base p.

> e X :gX0+pX1+A..+pe71XE71.
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Pohlig-Hellman - Prime power case

DLOG - Special case
Let G = (g), of order N = p€, where p is prime. Given an element X € G, compute
X € Z such that g¥ = X.

Algorithm
Solving the above reduces to solving DLOG in groups of order p, by iteratively
computing coefficients in the p-adic expansion of X.

» Write X = Xg + X1 + - -+ + p® 1Xe_1 in base p.

> e X :gX0+pX1+A..+pe71XE71.

> Lety =Xo+px1+---+ p”—lxn,l be a partial solution.
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Pohlig-Hellman - Prime power case

DLOG - Special case
Let G = (g), of order N = p€, where p is prime. Given an element X € G, compute
X € Z such that g¥ = X.

Algorithm
Solving the above reduces to solving DLOG in groups of order p, by iteratively
computing coefficients in the p-adic expansion of X.

» Write X = Xg + X1 + - -+ + p® 1Xe_1 in base p.

> e X :gX0+pX1+A..+pe71XE71.

> Lety =Xo+px1+---+ p”—lxn,l be a partial solution.
> Notice g VX = gXnP"++p" Xe-1,
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Pohlig-Hellman - Prime power case

DLOG - Special case
Let G = (g), of order N = p€, where p is prime. Given an element X € G, compute
X € Z such that g¥ = X.

Algorithm
Solving the above reduces to solving DLOG in groups of order p, by iteratively
computing coefficients in the p-adic expansion of X.
» Write X = Xo + pX1 + - -+ + p® 1Xe_1 in base p.
> ie X :ng+pxl+~-+pe*1xefll
> Lety =Xo+px1+---+ p”—lxn,l be a partial solution.
> Notice g VX = ginP"++p* er,

> Then (gP° ) = (g¥X)P" ",
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Pohlig-Hellman - Full algorithm

Back to the general case, where G has order N = p{'pS? - .- pp.

The Chinese Remainder Theorem

Since G ~ Z/pT7Z x Z)PSPZ x - -~ x Z/py'Z, simply project onto each summand.

Solving each prime power case, we get a system of congruences

x=x; (mod pf),

x=x, (mod pg),

which recovers x mod N.
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Baby Step - Giant Step

Due to Pohlig-Hellman, the following is sufficient:

The discrete logarithm (DLOG) problem

Let G = (g), of prime order p. Given an element X € G, compute X € Z such that
g=X.

Baby step-Giant step
Solves in O(,/p) time and memory.

» Based on a simple time-memory trade-off.
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Baby step-Giant step algorithm

Basic idea

Write the solution X = am + b for m = [/p], i.e. g9+ = X.

1. Set m = [/p].

2. Foreach0 < b <m:
2.1 Compute and save the pair (b,g?) in a table.

3. compute Y =g~ ™.

4. Foreach0<a<m:

4.1 Compute and check if XY9 is in the table, say for b.
4.2 If so, return am + b.
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Generic Groups vs. Actual Groups

Can we do better?
The above is essentially optimal for generic groups. However, for actual groups, there
may be better algorithms.
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Generic Groups vs. Actual Groups

Can we do better?
The above is essentially optimal for generic groups. However, for actual groups, there
may be better algorithms.

» In (Z/NZ,+) DLOG is poly time; division modulo N.
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Generic Groups vs. Actual Groups

Can we do better?
The above is essentially optimal for generic groups. However, for actual groups, there
may be better algorithms.

» In (Z/NZ,+) DLOG is poly time; division modulo N.
» In (Z/NZ)* DLOG is sub-exponential.
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Generic Groups vs. Actual Groups

Can we do better?
The above is essentially optimal for generic groups. However, for actual groups, there
may be better algorithms.

» In (Z/NZ,+) DLOG is poly time; division modulo N.
» In (Z/NZ)* DLOG is sub-exponential.
» In E(Fq) we do not know any better algorithms.
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Elliptic Curves - Very short intro

Elliptic Curves
Let A,B € Fy. Then we can think of an elliptic curve E/Fg defined by A, B as the set

E={(x,y) €Fg x Fyq|y*=x>+Ax+ B} U {cc}

Incredible fact:
The set above can be given a group structure, where P 4+ Q can be computed from
rational functions in X(P),y(P),x(Q),y(Q).
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Elliptic Curves - Very short intro

4

-(P+Q)

P+Q

[ K
A~

@ NTNU | séancandrecnons

18



Elliptic Curves - Very short intro

Elliptic Curves
Let A,B € Fy. Then we can think of an elliptic curve E/Fg defined by A, B as the set

E={(x.y) € Fq x Fy | y> = + Ax + B} U {0}

Incredible fact:
The set above can be given a group structure, where P 4+ Q can be computed from
rational functions in x(P),y(P),x(Q),y(Q).

Rational points
For any field Fy where E is defined, E(Fy) denotes the subgroup of Fg-rational points
on E (i.e. points P where X(P),y(P) € Fg).

B NTNU | scaneintecmosy 1



The Hasse Interval

Theorem (Hasse)
Let E/Fq be an elliptic curve. Then

q+1-2/q<#E(Fq) <q+1+2/q

In fact, a pretty strong converse to this theorem also holds.
We need the following:

Theorem (Waterhouse/Deuring/Riick)

Let Ne [p+1—2,/p,p+1+2,/p] be an integer. Then there exists an elliptic curve
E/Fp with E(Fp) = (P) cyclic of order N.
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Den Boer

Setup

Assume that G = (g) is a group of prime order p, and that p — 1 is (polynomially)
smooth.

Further, let O be a CDH oracle, i.e. something which on input (g,g%,g°) returns go
in polynomial time.

Theorem (Den Boer)

Let G be as above, and assume we have access to O. Then there exists a polynomial
time algorithm for solving DLOG in G.

Intuitively, in these special cases, DLOG is equivalent to CDH.
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Black box field arithmetic

Definition
Let G = (g) be a group of prime order p. We define the black-box field (, +,-) as:

> :{g"\an} as sets.

> Addition: g7 4 gP := gg”.
» Multiplication: g2 - gb := g.
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Black box field arithmetic

Definition
Let G = (g) be a group of prime order p. We define the black-box field (, +,-) as:

> : {89 | 0 €Z} as sets.
> Addition: g7 4 gP := gg”.
» Multiplication: g2 - gb := g.

Lemma
Let Fy denote the finite field Z./pZ. Then

la]=¢g°
is an isomorphism of fields.
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Computing operations

Almost everything is easy to compute in .

» Computing [a]+ @ .= g9gb is efficient.

» Computing [a]- @ requires computing g% from g% and g?. Precisely what O
does!

» Computing [a] from a € Z/pZ is simply computing g°.

» Computing a from @ however is hard. In fact, this is precicely solving the DLOG
instance (g,87).
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Computing operations

Almost everything is easy to compute in .

» Computing [a]+ @ .= g9gb is efficient.
» Computing [a]- @ requires computing g% from g% and g?. Precisely what O
does!
» Computing [a] from a € Z/pZ is simply computing g°.
» Computing a from @ however is hard. In fact, this is precicely solving the DLOG
instance (g,87).
Our Dlog instance...
We were given the Dlog instance (g,8%). These objects of G can also be seen as

elements of , namely | 1] and [X] Magic: Using some algebraic relation on [X] we
can recover X.
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Proof of Den Boer’s Theorem

» Fix any generator r of (Fp)*.
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Proof of Den Boer’s Theorem

» Fix any generator r of (Fp)*.

» Compute [r].
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Proof of Den Boer’s Theorem

» Fix any generator r of (Fp)*.

» Compute [r].
> Use generic group algorithms to solve the Dlog instance ([r],[x]) in ()X

» This crucially requires O (for multiplication in ) and the fact that p — 1 is

smooth (Pohlig-Hellman in ()X)
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Proof of Den Boer’s Theorem

» Fix any generator r of (Fp)*.

» Compute [r].
> Use generic group algorithms to solve the Dlog instance ([r],[x]) in ()X

» This crucially requires O (for multiplication in ) and the fact that p — 1 is

smooth (Pohlig-Hellman in ()X)

> Let y be the solution (i.e. =[x]). Recover x as ¥
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A fantastic trick

Limitations
The requirement that p — 1 is smooth in Den Boer's reduction almost certainly not

hold for random primes. The requirement came from the fact that we needed DLOG
to be easy in (Fp)*.
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A fantastic trick

Limitations

The requirement that p — 1 is smooth in Den Boer's reduction almost certainly not
hold for random primes. The requirement came from the fact that we needed DLOG
to be easy in (Fp)*.

Brilliant ideal!
Replace IF;; with some other algebraic group over Fp!!
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A fantastic trick

Limitations

The requirement that p — 1 is smooth in Den Boer's reduction almost certainly not
hold for random primes. The requirement came from the fact that we needed DLOG
to be easy in (Fp)*.

Brilliant ideal!
Replace ]F;; with some other algebraic group over Fp!!

Theorem (Maurer)

Let G be a group of prime order p, and assume we have access to O. Assume further
that we are given an elliptic curve E with #E(IFp) smooth. Then there exists a
polynomial time algorithm for solving DLOG in G.

Intuitively, as soon as we know a smooth ordered algebraic group over F, (e.g. E(FFp)),
DLOG is equivalent to CDH in G.
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Black box curve

Corollary
The map

[P]: E(Fp) — E(Tp)

is an isomorphism of groups.
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Proof of Maurer’s Theorem

Assume, for simplicity that E(IFp) is cyclic.
» Fix any generator P of E(IFp).

Compute |P| € E()
Compute the point @ =(x],-).2
» Use generic group algorithms to solve the Dlog instance H,@ in E( )

v

v

> Let ¥ be a solution (i.e. E @ Recover X as the x-coordinate of [y]P.

2When x does not define a point on the curve, we can simply replace X by X + d for any d that we
know, and proceed as usual.
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Are we done?

Limitations
Formally, this does NOT prove that CDH and DLOG are equivalent. But it comes very
close.

» The existance of a polynomially smooth number in the Hasse interval
p+1-2p,p+1+2,/p]is only conjectural.

> Bigger problem: Finding a curve of given order over [F is generally hard.

» In practice, such curves are known for widely used p.

» See May, Schneider (2023): Dlog is Practically as Hard (or Easy) as DH — Solving
Dlogs via DH Oracles on EC Standards
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https://eprint.iacr.org/2023/539
https://eprint.iacr.org/2023/539
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