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Diffie-Hellman
A Cornerstone of Modern Cryptography
In 1976, Diffie and Hellman came up with a way for two parties to arrive at a shared
secret, only communicating over a public channel.

Setup
Fix a cyclic group G = 〈g〉 of order N.

Alice Bob
a←$Z/NZ

b←$Z/NZ

key = (gb)a key = (ga)b

ga

gb
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Discrete logarithm
Setup
Fix a cyclic group G = 〈g〉 of order N.

Alice Bob
a←$Z/NZ

b←$Z/NZ

key = (gb)a key = (ga)b

ga

gb

The discrete logarithm problem
Given an element X ∈ G, compute x ∈ Z such that gx = X .

The computational Diffie-Hellman problem
Given g, ga, gb ∈ G, compute gab ∈ G.
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Reductions

Relating problems
Given Problem 1 and Problem 2, how do we prove which one is harder?

Oracles and reductions!
Assume we are given an oracle1 O for Problem 1, we say that Problem 2 reduces to
Problem 1, if we can use O to solve Problem 2 (in polynomial time).
Intuitively, Problem 2 can not be harder than Problem 1.

Equivalent problems
If Problem 1 reduces to Problem 2 AND Problem 2 reduces to Problem 1, we say that
these problems are equivalent.

1Something which takes an instance of Problem 1 and spits out an answer in polynomial time.
Importantly, we do not care how.
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A Trivial Reduction
The discrete logarithm problem (DLOG)
Given an element X ∈ G, compute x ∈ Z such that gx = X .

The computational Diffie-Hellman (CDH) problem
Given g, ga, gb ∈ G, compute gab ∈ G.

Observation
CDH reduces to DLOG.

Proof.
Given an instance g, ga, gb ∈ G of CDH, and a oracle O for DLOG, get a← O(g, ga),
and output (gb)a.
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Summary

Goal of lecture
I So far, we have that CDH reduces to DLOG.
I This does not really say much about the security of Diffie-Hellman...
I What we really want is a reduction in the OTHER direction.

8



Contents
Introduction

Diffie-Hellman
Discrete Logarithms and Diffie-Hellman Problems
Reductions

Generic Group Algorithms for Discrete Logarithms
Pohlig-Hellman
Baby Step - Giant Step
Can we do better?

Rational Points on Elliptic Curves
CDH = Discrete Logarithm?

Den Boer’s Reduction
Maurer’s Reduction

9



Pohlig-Hellman

The discrete logarithm (DLOG) problem
Let G = 〈g〉, of order N = pe11 p

e2
2 · · ·p

en
n , where pi are prime powers. Given an element

X ∈ G, compute x ∈ Z such that gx = X .

Pohlig-Hellman
Reduces this to computing DLOGs in groups of order pi.
I Solving discrete logs in groups of prime power order.
I Combining results using the chinese remainder theorem.
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Pohlig-Hellman - Prime power case
DLOG - Special case
Let G = 〈g〉, of order N = pe, where p is prime. Given an element X ∈ G, compute
x ∈ Z such that gx = X .

Algorithm
Solving the above reduces to solving DLOG in groups of order p, by iteratively
computing coefficients in the p-adic expansion of x.
I Write x = x0 + px1 + · · ·+ pe−1xe−1 in base p.

I i.e. X = gx0+px1+···+pe−1xe−1 .

I Let y = x0 + px1 + · · ·+ pn−1xn−1 be a partial solution.
I Notice g−yX = gxnp

n+···+pe−1xe−1 .
I Then (gp

e−1
)xn = (g−yX)p

e−1−n .
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Pohlig-Hellman - Full algorithm

Back to the general case, where G has order N = pe11 p
e2
2 · · ·p

en
n .

The Chinese Remainder Theorem
Since G ' Z/pe11 Z× Z/pe22 Z× · · · × Z/penn Z, simply project onto each summand.
Solving each prime power case, we get a system of congruences

x ≡ x1 (mod pe11 ),

...
x ≡ xn (mod penn ),

which recovers x mod N.
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Baby Step - Giant Step

Due to Pohlig-Hellman, the following is sufficient:

The discrete logarithm (DLOG) problem
Let G = 〈g〉, of prime order p. Given an element X ∈ G, compute x ∈ Z such that
gx = X .

Baby step-Giant step
Solves in O(

√
p) time and memory.

I Based on a simple time-memory trade-off.
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Baby step-Giant step algorithm

Basic idea
Write the solution x = am+ b for m = d√pe, i.e. gam+b = X .

1. Set m = d√pe.

2. For each 0 ≤ b < m:
2.1 Compute and save the pair (b, gb) in a table.

3. compute Y = g−m.

4. For each 0 ≤ a < m:
4.1 Compute and check if XYa is in the table, say for b.
4.2 If so, return am+ b.
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Generic Groups vs. Actual Groups

Can we do better?
The above is essentially optimal for generic groups. However, for actual groups, there
may be better algorithms.

I In (Z/NZ,+) DLOG is poly time; division modulo N.
I In (Z/NZ)× DLOG is sub-exponential.
I In E(Fq) we do not know any better algorithms.
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Elliptic Curves - Very short intro

Elliptic Curves
Let A,B ∈ Fq. Then we can think of an elliptic curve E/Fq defined by A,B as the set

E = {(x, y) ∈ Fq × Fq | y2 = x3 + Ax + B} ∪ {∞}

Incredible fact:
The set above can be given a group structure, where P+ Q can be computed from
rational functions in x(P), y(P), x(Q), y(Q).
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Elliptic Curves - Very short intro

Elliptic Curves
Let A,B ∈ Fq. Then we can think of an elliptic curve E/Fq defined by A,B as the set

E = {(x, y) ∈ Fq × Fq | y2 = x3 + Ax + B} ∪ {∞}

Incredible fact:
The set above can be given a group structure, where P+ Q can be computed from
rational functions in x(P), y(P), x(Q), y(Q).

Rational points
For any field Fq where E is defined, E(Fq) denotes the subgroup of Fq-rational points
on E (i.e. points P where x(P), y(P) ∈ Fq).
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The Hasse Interval

Theorem (Hasse)
Let E/Fq be an elliptic curve. Then

q+ 1− 2
√
q ≤ #E(Fq) ≤ q+ 1 + 2

√
q

In fact, a pretty strong converse to this theorem also holds.
We need the following:

Theorem (Waterhouse/Deuring/Rück)
Let N ∈ [p+ 1− 2

√
p,p+ 1 + 2

√
p] be an integer. Then there exists an elliptic curve

E/Fp with E(Fp) = 〈P〉 cyclic of order N.
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Den Boer

Setup
Assume that G = 〈g〉 is a group of prime order p, and that p− 1 is (polynomially)
smooth.
Further, let O be a CDH oracle, i.e. something which on input (g, ga, gb) returns gab
in polynomial time.

Theorem (Den Boer)
Let G be as above, and assume we have access to O. Then there exists a polynomial
time algorithm for solving DLOG in G.
Intuitively, in these special cases, DLOG is equivalent to CDH.
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Black box field arithmetic
Definition
Let G = 〈g〉 be a group of prime order p. We define the black-box field ( Fp ,+, ·) as:

I Fp = {ga | a ∈ Z} as sets.

I Addition: ga + gb := gagb.
I Multiplication: ga · gb := gab.

Lemma
Let Fp denote the finite field Z/pZ. Then

: Fp → Fp

a = ga

is an isomorphism of fields.
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Computing operations

Almost everything is easy to compute in Fp .

I Computing a + b := gagb is efficient.
I Computing a · b requires computing gab from ga and gb. Precisely what O

does!
I Computing a from a ∈ Z/pZ is simply computing ga.
I Computing a from a however is hard. In fact, this is precicely solving the DLOG

instance (g, ga).

Our Dlog instance...
We were given the Dlog instance (g, gx). These objects of G can also be seen as
elements of Fp , namely 1 and x . Magic: Using some algebraic relation on x , we
can recover x.
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Proof of Den Boer’s Theorem

I Fix any generator r of (Fp)×.

I Compute r .
I Use generic group algorithms to solve the Dlog instance ( r , x ) in ( Fp )×.

I This crucially requires O (for multiplication in Fp ) and the fact that p− 1 is

smooth (Pohlig-Hellman in ( Fp )×).

I Let y be the solution (i.e. r
y
= x ). Recover x as ry
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A fantastic trick
Limitations
The requirement that p− 1 is smooth in Den Boer’s reduction almost certainly not
hold for random primes. The requirement came from the fact that we needed DLOG
to be easy in (Fp)×.

Brilliant idea!
Replace F×

p with some other algebraic group over Fp!!

Theorem (Maurer)
Let G be a group of prime order p, and assume we have access to O. Assume further
that we are given an elliptic curve E with #E(Fp) smooth. Then there exists a
polynomial time algorithm for solving DLOG in G.
Intuitively, as soon as we know a smooth ordered algebraic group over Fp (e.g. E(Fp)),
DLOG is equivalent to CDH in G.
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Black box curve

Corollary
The map

P : E(Fp)→ E( Fp )

P = ( x(P) , y(P) )

is an isomorphism of groups.
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Proof of Maurer’s Theorem

Assume, for simplicity that E(Fp) is cyclic.
I Fix any generator P of E(Fp).
I Compute P ∈ E( Fp ).

I Compute the point Q = ( x ,−).2

I Use generic group algorithms to solve the Dlog instance ( P , Q ) in E( Fp ).

I Let y be a solution (i.e. [y] P = Q ). Recover x as the x-coordinate of [y]P.

2When x does not define a point on the curve, we can simply replace x by x + d for any d that we
know, and proceed as usual.
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Are we done?

Limitations
Formally, this does NOT prove that CDH and DLOG are equivalent. But it comes very
close.
I The existance of a polynomially smooth number in the Hasse interval

[p+ 1− 2
√
p,p+ 1 + 2

√
p] is only conjectural.

I Bigger problem: Finding a curve of given order over Fp is generally hard.
I In practice, such curves are known for widely used p.

I See May, Schneider (2023): Dlog is Practically as Hard (or Easy) as DH – Solving
Dlogs via DH Oracles on EC Standards
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Questions?
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