
DISCRETE LOGARITHMS,
DIFFIE-HELLMAN PROBLEMS AND

THE MAURER REDUCTION
Trial Lecture

Jonathan Komada Eriksen

23.08.2024

Contents
Introduction

Diffie-Hellman
Discrete Logarithms and Diffie-Hellman Problems
Reductions

Generic Group Algorithms for Discrete Logarithms
Pohlig-Hellman
Baby Step - Giant Step
Can we do better?

Rational Points on Elliptic Curves
CDH = Discrete Logarithm?

Den Boer’s Reduction
Maurer’s Reduction

2

Contents
Introduction

Diffie-Hellman
Discrete Logarithms and Diffie-Hellman Problems
Reductions

Generic Group Algorithms for Discrete Logarithms
Pohlig-Hellman
Baby Step - Giant Step
Can we do better?

Rational Points on Elliptic Curves
CDH = Discrete Logarithm?

Den Boer’s Reduction
Maurer’s Reduction

3

Diffie-Hellman
A Cornerstone of Modern Cryptography
In 1976, Diffie and Hellman came up with a way for two parties to arrive at a shared
secret, only communicating over a public channel.

Setup
Fix a cyclic group G = 〈g〉 of order N.

Alice Bob
a←$Z/NZ

b←$Z/NZ

key = (gb)a key = (ga)b

ga

gb

4

Discrete logarithm
Setup
Fix a cyclic group G = 〈g〉 of order N.

Alice Bob
a←$Z/NZ

b←$Z/NZ

key = (gb)a key = (ga)b

ga

gb

The discrete logarithm problem
Given an element X ∈ G, compute x ∈ Z such that gx = X .

The computational Diffie-Hellman problem
Given g, ga, gb ∈ G, compute gab ∈ G.

5

Discrete logarithm
Setup
Fix a cyclic group G = 〈g〉 of order N.

Alice Bob
a←$Z/NZ

b←$Z/NZ

key = (gb)a key = (ga)b

ga

gb

The discrete logarithm problem
Given an element X ∈ G, compute x ∈ Z such that gx = X .

The computational Diffie-Hellman problem
Given g, ga, gb ∈ G, compute gab ∈ G.

5

Reductions

Relating problems
Given Problem 1 and Problem 2, how do we prove which one is harder?

Oracles and reductions!
Assume we are given an oracle1 O for Problem 1, we say that Problem 2 reduces to
Problem 1, if we can use O to solve Problem 2 (in polynomial time).
Intuitively, Problem 2 can not be harder than Problem 1.

Equivalent problems
If Problem 1 reduces to Problem 2 AND Problem 2 reduces to Problem 1, we say that
these problems are equivalent.

1Something which takes an instance of Problem 1 and spits out an answer in polynomial time.
Importantly, we do not care how.

6

Reductions

Relating problems
Given Problem 1 and Problem 2, how do we prove which one is harder?

Oracles and reductions!
Assume we are given an oracle1 O for Problem 1, we say that Problem 2 reduces to
Problem 1, if we can use O to solve Problem 2 (in polynomial time).
Intuitively, Problem 2 can not be harder than Problem 1.

Equivalent problems
If Problem 1 reduces to Problem 2 AND Problem 2 reduces to Problem 1, we say that
these problems are equivalent.

1Something which takes an instance of Problem 1 and spits out an answer in polynomial time.
Importantly, we do not care how.

6

Reductions

Relating problems
Given Problem 1 and Problem 2, how do we prove which one is harder?

Oracles and reductions!
Assume we are given an oracle1 O for Problem 1, we say that Problem 2 reduces to
Problem 1, if we can use O to solve Problem 2 (in polynomial time).
Intuitively, Problem 2 can not be harder than Problem 1.

Equivalent problems
If Problem 1 reduces to Problem 2 AND Problem 2 reduces to Problem 1, we say that
these problems are equivalent.

1Something which takes an instance of Problem 1 and spits out an answer in polynomial time.
Importantly, we do not care how.

6

A Trivial Reduction
The discrete logarithm problem (DLOG)
Given an element X ∈ G, compute x ∈ Z such that gx = X .

The computational Diffie-Hellman (CDH) problem
Given g, ga, gb ∈ G, compute gab ∈ G.

Observation
CDH reduces to DLOG.

Proof.
Given an instance g, ga, gb ∈ G of CDH, and a oracle O for DLOG, get a← O(g, ga),
and output (gb)a.

7

A Trivial Reduction
The discrete logarithm problem (DLOG)
Given an element X ∈ G, compute x ∈ Z such that gx = X .

The computational Diffie-Hellman (CDH) problem
Given g, ga, gb ∈ G, compute gab ∈ G.

Observation
CDH reduces to DLOG.

Proof.
Given an instance g, ga, gb ∈ G of CDH, and a oracle O for DLOG, get a← O(g, ga),
and output (gb)a.

7

Summary

Goal of lecture
I So far, we have that CDH reduces to DLOG.
I This does not really say much about the security of Diffie-Hellman...
I What we really want is a reduction in the OTHER direction.

8

Contents
Introduction

Diffie-Hellman
Discrete Logarithms and Diffie-Hellman Problems
Reductions

Generic Group Algorithms for Discrete Logarithms
Pohlig-Hellman
Baby Step - Giant Step
Can we do better?

Rational Points on Elliptic Curves
CDH = Discrete Logarithm?

Den Boer’s Reduction
Maurer’s Reduction

9

Pohlig-Hellman

The discrete logarithm (DLOG) problem
Let G = 〈g〉, of order N = pe11 p

e2
2 · · ·p

en
n , where pi are prime powers. Given an element

X ∈ G, compute x ∈ Z such that gx = X .

Pohlig-Hellman
Reduces this to computing DLOGs in groups of order pi.
I Solving discrete logs in groups of prime power order.
I Combining results using the chinese remainder theorem.

10

Pohlig-Hellman - Prime power case
DLOG - Special case
Let G = 〈g〉, of order N = pe, where p is prime. Given an element X ∈ G, compute
x ∈ Z such that gx = X .

Algorithm
Solving the above reduces to solving DLOG in groups of order p, by iteratively
computing coefficients in the p-adic expansion of x.
I Write x = x0 + px1 + · · ·+ pe−1xe−1 in base p.

I i.e. X = gx0+px1+···+pe−1xe−1 .

I Let y = x0 + px1 + · · ·+ pn−1xn−1 be a partial solution.
I Notice g−yX = gxnp

n+···+pe−1xe−1 .
I Then (gp

e−1
)xn = (g−yX)p

e−1−n .

11

Pohlig-Hellman - Prime power case
DLOG - Special case
Let G = 〈g〉, of order N = pe, where p is prime. Given an element X ∈ G, compute
x ∈ Z such that gx = X .

Algorithm
Solving the above reduces to solving DLOG in groups of order p, by iteratively
computing coefficients in the p-adic expansion of x.
I Write x = x0 + px1 + · · ·+ pe−1xe−1 in base p.

I i.e. X = gx0+px1+···+pe−1xe−1 .
I Let y = x0 + px1 + · · ·+ pn−1xn−1 be a partial solution.

I Notice g−yX = gxnp
n+···+pe−1xe−1 .

I Then (gp
e−1

)xn = (g−yX)p
e−1−n .

11

Pohlig-Hellman - Prime power case
DLOG - Special case
Let G = 〈g〉, of order N = pe, where p is prime. Given an element X ∈ G, compute
x ∈ Z such that gx = X .

Algorithm
Solving the above reduces to solving DLOG in groups of order p, by iteratively
computing coefficients in the p-adic expansion of x.
I Write x = x0 + px1 + · · ·+ pe−1xe−1 in base p.

I i.e. X = gx0+px1+···+pe−1xe−1 .
I Let y = x0 + px1 + · · ·+ pn−1xn−1 be a partial solution.
I Notice g−yX = gxnp

n+···+pe−1xe−1 .

I Then (gp
e−1

)xn = (g−yX)p
e−1−n .

11

Pohlig-Hellman - Prime power case
DLOG - Special case
Let G = 〈g〉, of order N = pe, where p is prime. Given an element X ∈ G, compute
x ∈ Z such that gx = X .

Algorithm
Solving the above reduces to solving DLOG in groups of order p, by iteratively
computing coefficients in the p-adic expansion of x.
I Write x = x0 + px1 + · · ·+ pe−1xe−1 in base p.

I i.e. X = gx0+px1+···+pe−1xe−1 .
I Let y = x0 + px1 + · · ·+ pn−1xn−1 be a partial solution.
I Notice g−yX = gxnp

n+···+pe−1xe−1 .
I Then (gp

e−1
)xn = (g−yX)p

e−1−n .

11

Pohlig-Hellman - Full algorithm

Back to the general case, where G has order N = pe11 p
e2
2 · · ·p

en
n .

The Chinese Remainder Theorem
Since G ' Z/pe11 Z× Z/pe22 Z× · · · × Z/penn Z, simply project onto each summand.
Solving each prime power case, we get a system of congruences

x ≡ x1 (mod pe11),

...
x ≡ xn (mod penn),

which recovers x mod N.

12

Baby Step - Giant Step

Due to Pohlig-Hellman, the following is sufficient:

The discrete logarithm (DLOG) problem
Let G = 〈g〉, of prime order p. Given an element X ∈ G, compute x ∈ Z such that
gx = X .

Baby step-Giant step
Solves in O(

√
p) time and memory.

I Based on a simple time-memory trade-off.

13

Baby step-Giant step algorithm

Basic idea
Write the solution x = am+ b for m = d√pe, i.e. gam+b = X .

1. Set m = d√pe.

2. For each 0 ≤ b < m:
2.1 Compute and save the pair (b, gb) in a table.

3. compute Y = g−m.

4. For each 0 ≤ a < m:
4.1 Compute and check if XYa is in the table, say for b.
4.2 If so, return am+ b.

14

Generic Groups vs. Actual Groups

Can we do better?
The above is essentially optimal for generic groups. However, for actual groups, there
may be better algorithms.

I In (Z/NZ,+) DLOG is poly time; division modulo N.
I In (Z/NZ)× DLOG is sub-exponential.
I In E(Fq) we do not know any better algorithms.

15

Generic Groups vs. Actual Groups

Can we do better?
The above is essentially optimal for generic groups. However, for actual groups, there
may be better algorithms.
I In (Z/NZ,+) DLOG is poly time; division modulo N.

I In (Z/NZ)× DLOG is sub-exponential.
I In E(Fq) we do not know any better algorithms.

15

Generic Groups vs. Actual Groups

Can we do better?
The above is essentially optimal for generic groups. However, for actual groups, there
may be better algorithms.
I In (Z/NZ,+) DLOG is poly time; division modulo N.
I In (Z/NZ)× DLOG is sub-exponential.

I In E(Fq) we do not know any better algorithms.

15

Generic Groups vs. Actual Groups

Can we do better?
The above is essentially optimal for generic groups. However, for actual groups, there
may be better algorithms.
I In (Z/NZ,+) DLOG is poly time; division modulo N.
I In (Z/NZ)× DLOG is sub-exponential.
I In E(Fq) we do not know any better algorithms.

15

Contents
Introduction

Diffie-Hellman
Discrete Logarithms and Diffie-Hellman Problems
Reductions

Generic Group Algorithms for Discrete Logarithms
Pohlig-Hellman
Baby Step - Giant Step
Can we do better?

Rational Points on Elliptic Curves
CDH = Discrete Logarithm?

Den Boer’s Reduction
Maurer’s Reduction

16

Elliptic Curves - Very short intro

Elliptic Curves
Let A,B ∈ Fq. Then we can think of an elliptic curve E/Fq defined by A,B as the set

E = {(x, y) ∈ Fq × Fq | y2 = x3 + Ax + B} ∪ {∞}

Incredible fact:
The set above can be given a group structure, where P+ Q can be computed from
rational functions in x(P), y(P), x(Q), y(Q).

17

Elliptic Curves - Very short intro

18

Elliptic Curves - Very short intro

Elliptic Curves
Let A,B ∈ Fq. Then we can think of an elliptic curve E/Fq defined by A,B as the set

E = {(x, y) ∈ Fq × Fq | y2 = x3 + Ax + B} ∪ {∞}

Incredible fact:
The set above can be given a group structure, where P+ Q can be computed from
rational functions in x(P), y(P), x(Q), y(Q).

Rational points
For any field Fq where E is defined, E(Fq) denotes the subgroup of Fq-rational points
on E (i.e. points P where x(P), y(P) ∈ Fq).

19

The Hasse Interval

Theorem (Hasse)
Let E/Fq be an elliptic curve. Then

q+ 1− 2
√
q ≤ #E(Fq) ≤ q+ 1 + 2

√
q

In fact, a pretty strong converse to this theorem also holds.
We need the following:

Theorem (Waterhouse/Deuring/Rück)
Let N ∈ [p+ 1− 2

√
p,p+ 1 + 2

√
p] be an integer. Then there exists an elliptic curve

E/Fp with E(Fp) = 〈P〉 cyclic of order N.

20

Contents
Introduction

Diffie-Hellman
Discrete Logarithms and Diffie-Hellman Problems
Reductions

Generic Group Algorithms for Discrete Logarithms
Pohlig-Hellman
Baby Step - Giant Step
Can we do better?

Rational Points on Elliptic Curves
CDH = Discrete Logarithm?

Den Boer’s Reduction
Maurer’s Reduction

21

Den Boer

Setup
Assume that G = 〈g〉 is a group of prime order p, and that p− 1 is (polynomially)
smooth.
Further, let O be a CDH oracle, i.e. something which on input (g, ga, gb) returns gab
in polynomial time.

Theorem (Den Boer)
Let G be as above, and assume we have access to O. Then there exists a polynomial
time algorithm for solving DLOG in G.
Intuitively, in these special cases, DLOG is equivalent to CDH.

22

Black box field arithmetic
Definition
Let G = 〈g〉 be a group of prime order p. We define the black-box field (Fp ,+, ·) as:

I Fp = {ga | a ∈ Z} as sets.

I Addition: ga + gb := gagb.
I Multiplication: ga · gb := gab.

Lemma
Let Fp denote the finite field Z/pZ. Then

: Fp → Fp

a = ga

is an isomorphism of fields.

23

Black box field arithmetic
Definition
Let G = 〈g〉 be a group of prime order p. We define the black-box field (Fp ,+, ·) as:

I Fp = {ga | a ∈ Z} as sets.

I Addition: ga + gb := gagb.
I Multiplication: ga · gb := gab.

Lemma
Let Fp denote the finite field Z/pZ. Then

: Fp → Fp

a = ga

is an isomorphism of fields.

23

Computing operations

Almost everything is easy to compute in Fp .

I Computing a + b := gagb is efficient.
I Computing a · b requires computing gab from ga and gb. Precisely what O

does!
I Computing a from a ∈ Z/pZ is simply computing ga.
I Computing a from a however is hard. In fact, this is precicely solving the DLOG

instance (g, ga).

Our Dlog instance...
We were given the Dlog instance (g, gx). These objects of G can also be seen as
elements of Fp , namely 1 and x . Magic: Using some algebraic relation on x , we
can recover x.

24

Computing operations

Almost everything is easy to compute in Fp .

I Computing a + b := gagb is efficient.
I Computing a · b requires computing gab from ga and gb. Precisely what O

does!
I Computing a from a ∈ Z/pZ is simply computing ga.
I Computing a from a however is hard. In fact, this is precicely solving the DLOG

instance (g, ga).

Our Dlog instance...
We were given the Dlog instance (g, gx). These objects of G can also be seen as
elements of Fp , namely 1 and x . Magic: Using some algebraic relation on x , we
can recover x.

24

Proof of Den Boer’s Theorem

I Fix any generator r of (Fp)×.

I Compute r .
I Use generic group algorithms to solve the Dlog instance (r , x) in (Fp)×.

I This crucially requires O (for multiplication in Fp) and the fact that p− 1 is

smooth (Pohlig-Hellman in (Fp)×).

I Let y be the solution (i.e. r
y
= x). Recover x as ry

25

Proof of Den Boer’s Theorem

I Fix any generator r of (Fp)×.
I Compute r .

I Use generic group algorithms to solve the Dlog instance (r , x) in (Fp)×.
I This crucially requires O (for multiplication in Fp) and the fact that p− 1 is

smooth (Pohlig-Hellman in (Fp)×).

I Let y be the solution (i.e. r
y
= x). Recover x as ry

25

Proof of Den Boer’s Theorem

I Fix any generator r of (Fp)×.
I Compute r .
I Use generic group algorithms to solve the Dlog instance (r , x) in (Fp)×.

I This crucially requires O (for multiplication in Fp) and the fact that p− 1 is

smooth (Pohlig-Hellman in (Fp)×).

I Let y be the solution (i.e. r
y
= x). Recover x as ry

25

Proof of Den Boer’s Theorem

I Fix any generator r of (Fp)×.
I Compute r .
I Use generic group algorithms to solve the Dlog instance (r , x) in (Fp)×.

I This crucially requires O (for multiplication in Fp) and the fact that p− 1 is

smooth (Pohlig-Hellman in (Fp)×).

I Let y be the solution (i.e. r
y
= x). Recover x as ry

25

A fantastic trick
Limitations
The requirement that p− 1 is smooth in Den Boer’s reduction almost certainly not
hold for random primes. The requirement came from the fact that we needed DLOG
to be easy in (Fp)×.

Brilliant idea!
Replace F×

p with some other algebraic group over Fp!!

Theorem (Maurer)
Let G be a group of prime order p, and assume we have access to O. Assume further
that we are given an elliptic curve E with #E(Fp) smooth. Then there exists a
polynomial time algorithm for solving DLOG in G.
Intuitively, as soon as we know a smooth ordered algebraic group over Fp (e.g. E(Fp)),
DLOG is equivalent to CDH in G.

26

A fantastic trick
Limitations
The requirement that p− 1 is smooth in Den Boer’s reduction almost certainly not
hold for random primes. The requirement came from the fact that we needed DLOG
to be easy in (Fp)×.

Brilliant idea!
Replace F×

p with some other algebraic group over Fp!!

Theorem (Maurer)
Let G be a group of prime order p, and assume we have access to O. Assume further
that we are given an elliptic curve E with #E(Fp) smooth. Then there exists a
polynomial time algorithm for solving DLOG in G.
Intuitively, as soon as we know a smooth ordered algebraic group over Fp (e.g. E(Fp)),
DLOG is equivalent to CDH in G.

26

A fantastic trick
Limitations
The requirement that p− 1 is smooth in Den Boer’s reduction almost certainly not
hold for random primes. The requirement came from the fact that we needed DLOG
to be easy in (Fp)×.

Brilliant idea!
Replace F×

p with some other algebraic group over Fp!!

Theorem (Maurer)
Let G be a group of prime order p, and assume we have access to O. Assume further
that we are given an elliptic curve E with #E(Fp) smooth. Then there exists a
polynomial time algorithm for solving DLOG in G.
Intuitively, as soon as we know a smooth ordered algebraic group over Fp (e.g. E(Fp)),
DLOG is equivalent to CDH in G.

26

Black box curve

Corollary
The map

P : E(Fp)→ E(Fp)

P = (x(P) , y(P))

is an isomorphism of groups.

27

Proof of Maurer’s Theorem

Assume, for simplicity that E(Fp) is cyclic.
I Fix any generator P of E(Fp).
I Compute P ∈ E(Fp).

I Compute the point Q = (x ,−).2

I Use generic group algorithms to solve the Dlog instance (P , Q) in E(Fp).

I Let y be a solution (i.e. [y] P = Q). Recover x as the x-coordinate of [y]P.

2When x does not define a point on the curve, we can simply replace x by x + d for any d that we
know, and proceed as usual.

28

Are we done?

Limitations
Formally, this does NOT prove that CDH and DLOG are equivalent. But it comes very
close.
I The existance of a polynomially smooth number in the Hasse interval

[p+ 1− 2
√
p,p+ 1 + 2

√
p] is only conjectural.

I Bigger problem: Finding a curve of given order over Fp is generally hard.
I In practice, such curves are known for widely used p.

I See May, Schneider (2023): Dlog is Practically as Hard (or Easy) as DH – Solving
Dlogs via DH Oracles on EC Standards

29

https://eprint.iacr.org/2023/539
https://eprint.iacr.org/2023/539

Questions?

30

	Introduction
	Diffie-Hellman
	Discrete Logarithms and Diffie-Hellman Problems
	Reductions

	Generic Group Algorithms for Discrete Logarithms
	Pohlig-Hellman
	Baby Step - Giant Step
	Can we do better?

	Rational Points on Elliptic Curves
	CDH = Discrete Logarithm?
	Den Boer's Reduction
	Maurer's Reduction

