NTNU | Norwegian University of Science and Technology

DISCRETE LOGARITHMS, DIFFIE-HELLMAN PROBLEMS AND THE MAURER REDUCTION

Trial Lecture

Jonathan Komada Eriksen

23.08.2024

Contents

Introduction

Diffie-Hellman Discrete Logarithms and Diffie-Hellman Problems Reductions

Generic Group Algorithms for Discrete Logarithms

Pohlig-Hellman Baby Step - Giant Step Can we do better?

Rational Points on Elliptic Curves

CDH = Discrete Logarithm?

Den Boer's Reduction Maurer's Reduction

Contents

Introduction Diffie-Hellman Discrete Logarithms and Diffie-Hellman Problems Reductions

Generic Group Algorithms for Discrete Logarithms

- Pohlig-Hellman Baby Step - Giant Step Can we do better?
- **Rational Points on Elliptic Curves**
- **CDH = Discrete Logarithm?** Den Boer's Reduction Maurer's Reduction

Diffie-Hellman

A Cornerstone of Modern Cryptography

In 1976, Diffie and Hellman came up with a way for two parties to arrive at a shared secret, only communicating over a public channel.

Setup

Fix a cyclic group $G = \langle g \rangle$ of order N.

Discrete logarithm

Setup

Fix a cyclic group $G = \langle g \rangle$ of order N.

The discrete logarithm problem

Given an element $X \in G$, compute $x \in \mathbb{Z}$ such that $g^x = X$.

Discrete logarithm

Setup

Fix a cyclic group $G = \langle g \rangle$ of order N.

The discrete logarithm problem

Given an element $X \in G$, compute $x \in \mathbb{Z}$ such that $g^x = X$.

The computational Diffie-Hellman problem

Given $g, g^a, g^b \in {\sf G}$, compute $g^{ab} \in {\sf G}$.

TNU | Norwegian University of Science and Technology

Reductions

Relating problems

Given Problem 1 and Problem 2, how do we prove which one is harder?

¹Something which takes an instance of Problem 1 and spits out an answer in polynomial time. Importantly, we do *not* care how.

Reductions

Relating problems

Given Problem 1 and Problem 2, how do we prove which one is harder?

Oracles and reductions!

Assume we are given an oracle¹ \mathcal{O} for Problem 1, we say that Problem 2 reduces to Problem 1, if we can use \mathcal{O} to solve Problem 2 (in polynomial time). Intuitively, Problem 2 can not be *harder* than Problem 1.

¹Something which takes an instance of Problem 1 and spits out an answer in polynomial time. Importantly, we do *not* care how.

Reductions

Relating problems

Given Problem 1 and Problem 2, how do we prove which one is harder?

Oracles and reductions!

Assume we are given an oracle¹ \mathcal{O} for Problem 1, we say that Problem 2 reduces to Problem 1, if we can use \mathcal{O} to solve Problem 2 (in polynomial time). Intuitively, Problem 2 can not be *harder* than Problem 1.

Equivalent problems

If Problem 1 reduces to Problem 2 AND Problem 2 reduces to Problem 1, we say that these problems are *equivalent*.

¹Something which takes an instance of Problem 1 and spits out an answer in polynomial time. Importantly, we do *not* care how.

A Trivial Reduction

The discrete logarithm problem (DLOG)

Given an element $X \in G$, compute $x \in \mathbb{Z}$ such that $g^x = X$.

The computational Diffie-Hellman (CDH) problem Given $g, g^a, g^b \in G$, compute $g^{ab} \in G$.

Observation CDH reduces to DLOG.

A Trivial Reduction

The discrete logarithm problem (DLOG)

Given an element $X \in G$, compute $x \in \mathbb{Z}$ such that $g^x = X$.

The computational Diffie-Hellman (CDH) problem Given $g, g^a, g^b \in G$, compute $g^{ab} \in G$.

Observation

CDH reduces to DLOG.

Proof.

Given an instance $g, g^a, g^b \in G$ of CDH, and a oracle \mathcal{O} for DLOG, get $a \leftarrow \mathcal{O}(g, g^a)$, and output $(g^b)^a$.

Summary

Goal of lecture

- ► So far, we have that CDH reduces to DLOG.
- This does not really say much about the security of Diffie-Hellman...
- ▶ What we really want is a reduction in the OTHER direction.

Contents

n**troduction** Diffie-Hellman Discrete Logarithms and Diffie-Hellman Problems Reductions

Generic Group Algorithms for Discrete Logarithms

- Pohlig-Hellman Baby Step - Giant Step Can we do better?
- **Rational Points on Elliptic Curves**
- **CDH = Discrete Logarithm?** Den Boer's Reduction Maurer's Reduction

Pohlig-Hellman

The discrete logarithm (DLOG) problem

Let $G = \langle g \rangle$, of order $N = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}$, where p_i are prime powers. Given an element $X \in G$, compute $x \in \mathbb{Z}$ such that $g^x = X$.

Pohlig-Hellman

Reduces this to computing DLOGs in groups of order p_i .

- Solving discrete logs in groups of prime power order.
- Combining results using the chinese remainder theorem.

DLOG - Special case

Let $G = \langle g \rangle$, of order $N = p^e$, where p is prime. Given an element $X \in G$, compute $x \in \mathbb{Z}$ such that $g^x = X$.

Algorithm

Write
$$x = x_0 + px_1 + \dots + p^{e-1}x_{e-1}$$
 in base *p*.
i.e. $X = g^{x_0 + px_1 + \dots + p^{e-1}x_{e-1}}$.

DLOG - Special case

Let $G = \langle g \rangle$, of order $N = p^e$, where p is prime. Given an element $X \in G$, compute $x \in \mathbb{Z}$ such that $g^x = X$.

Algorithm

DLOG - Special case

Let $G = \langle g \rangle$, of order $N = p^e$, where p is prime. Given an element $X \in G$, compute $x \in \mathbb{Z}$ such that $g^x = X$.

Algorithm

DLOG - Special case

Let $G = \langle g \rangle$, of order $N = p^e$, where p is prime. Given an element $X \in G$, compute $x \in \mathbb{Z}$ such that $g^x = X$.

Algorithm

Pohlig-Hellman - Full algorithm

Back to the general case, where G has order $N = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}$.

The Chinese Remainder Theorem

Since $G \simeq \mathbb{Z}/p_1^{e_1}\mathbb{Z} \times \mathbb{Z}/p_2^{e_2}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_n^{e_n}\mathbb{Z}$, simply project onto each summand. Solving each prime power case, we get a system of congruences

$$x \equiv x_1 \pmod{p_1^{e_1}},$$

$$\vdots$$

$$x \equiv x_n \pmod{p_n^{e_n}},$$

which recovers $x \mod N$.

Baby Step - Giant Step

Due to Pohlig-Hellman, the following is sufficient:

The discrete logarithm (DLOG) problem

Let $G = \langle g \rangle$, of prime order p. Given an element $X \in G$, compute $x \in \mathbb{Z}$ such that $g^x = X$.

Baby step-Giant step

Solves in $O(\sqrt{p})$ time and memory.

Based on a simple time-memory trade-off.

Baby step-Giant step algorithm

Basic idea

Write the solution x = am + b for $m = \lceil \sqrt{p} \rceil$, i.e. $g^{am+b} = X$.

- **1.** Set $m = \lceil \sqrt{p} \rceil$.
- **2.** For each $0 \le b < m$:

2.1 Compute and save the pair (b, g^b) in a table.

- **3.** compute $Y = g^{-m}$.
- 4. For each 0 ≤ a < m:
 4.1 Compute and check if XY^a is in the table, say for b.
 4.2 If so, return am + b.

Can we do better?

The above is essentially optimal for *generic groups*. However, for *actual* groups, there may be better algorithms.

Can we do better?

The above is essentially optimal for *generic groups*. However, for *actual* groups, there may be better algorithms.

▶ In $(\mathbb{Z}/N\mathbb{Z}, +)$ DLOG is poly time; division modulo *N*.

Can we do better?

The above is essentially optimal for *generic groups*. However, for *actual* groups, there may be better algorithms.

- ▶ In $(\mathbb{Z}/N\mathbb{Z}, +)$ DLOG is poly time; division modulo *N*.
- ▶ In $(\mathbb{Z}/N\mathbb{Z})^{\times}$ DLOG is sub-exponential.

Can we do better?

The above is essentially optimal for *generic groups*. However, for *actual* groups, there may be better algorithms.

- ▶ In $(\mathbb{Z}/N\mathbb{Z}, +)$ DLOG is poly time; division modulo *N*.
- ▶ In $(\mathbb{Z}/N\mathbb{Z})^{\times}$ DLOG is sub-exponential.
- ▶ In $E(\mathbb{F}_q)$ we do not know any better algorithms.

Contents

Introduction

- Diffie-Hellman
- Discrete Logarithms and Diffie-Hellman Problems Reductions

Generic Group Algorithms for Discrete Logarithms

Pohlig-Hellman Baby Step - Giant Step Can we do better?

Rational Points on Elliptic Curves

CDH = Discrete Logarithm? Den Boer's Reduction Maurer's Reduction

Elliptic Curves - Very short intro

Elliptic Curves

Let $A, B \in \mathbb{F}_q$. Then we can think of an elliptic curve E/\mathbb{F}_q defined by A, B as the set

$$E = \{(x, y) \in \overline{\mathbb{F}}_q \times \overline{\mathbb{F}}_q \mid y^2 = x^3 + Ax + B\} \cup \{\infty\}$$

Incredible fact:

The set above can be given a group structure, where P + Q can be computed from rational functions in x(P), y(P), x(Q), y(Q).

Elliptic Curves - Very short intro

Elliptic Curves - Very short intro

Elliptic Curves

Let $A, B \in \mathbb{F}_q$. Then we can think of an elliptic curve E/\mathbb{F}_q defined by A, B as the set

$$E = \{(x, y) \in \overline{\mathbb{F}}_q \times \overline{\mathbb{F}}_q \mid y^2 = x^3 + Ax + B\} \cup \{\infty\}$$

Incredible fact:

The set above can be given a group structure, where P + Q can be computed from rational functions in x(P), y(P), x(Q), y(Q).

Rational points

For any field \mathbb{F}_q where E is defined, $E(\mathbb{F}_q)$ denotes the *subgroup* of \mathbb{F}_q -rational points on E (i.e. points P where $x(P), y(P) \in \mathbb{F}_q$).

The Hasse Interval

Theorem (Hasse)

Let E/\mathbb{F}_q be an elliptic curve. Then

$$q+1-2\sqrt{q} \le \#\mathcal{E}(\mathbb{F}_q) \le q+1+2\sqrt{q}$$

In fact, a pretty strong converse to this theorem also holds. We need the following:

Theorem (Waterhouse/Deuring/Rück)

Let $N \in [p + 1 - 2\sqrt{p}, p + 1 + 2\sqrt{p}]$ be an integer. Then there exists an elliptic curve E/\mathbb{F}_p with $E(\mathbb{F}_p) = \langle P \rangle$ cyclic of order N.

Contents

Introduction

- Diffie-Hellman
- Discrete Logarithms and Diffie-Hellman Problems Reductions

Generic Group Algorithms for Discrete Logarithms

Pohlig-Hellman Baby Step - Giant Step Can we do better?

Rational Points on Elliptic Curves

CDH = Discrete Logarithm?

Den Boer's Reduction Maurer's Reduction

Den Boer

Setup

Assume that $G = \langle g \rangle$ is a group of prime order p, and that p - 1 is (polynomially) smooth.

Further, let \mathcal{O} be a CDH oracle, i.e. something which on input (g, g^a, g^b) returns g^{ab} in polynomial time.

Theorem (Den Boer)

Let G be as above, and assume we have access to \mathcal{O} . Then there exists a polynomial time algorithm for solving DLOG in G.

Intuitively, in these special cases, DLOG is equivalent to CDH.

Black box field arithmetic

Definition

Let $G = \langle g \rangle$ be a group of prime order p. We define the black-box field $(\mathbb{F}_p, +, \cdot)$ as:

•
$$\mathbb{F}_{p} = \{g^{a} \mid a \in \mathbb{Z}\}$$
 as sets

- Addition: $g^a + g^b := g^a g^b$.
- Multiplication: $g^a \cdot g^b := g^{ab}$.

Black box field arithmetic

Definition

Let $G = \langle g \rangle$ be a group of prime order p. We define the black-box field $(\mathbb{F}_p, +, \cdot)$ as:

•
$$\mathbb{F}_{p} = \{g^{a} \mid a \in \mathbb{Z}\}$$
 as sets

• Addition:
$$g^a + g^b := g^a g^b$$
.

• Multiplication: $g^a \cdot g^b := g^{ab}$.

Lemma

Let \mathbb{F}_p denote the finite field $\mathbb{Z}/p\mathbb{Z}.$ Then

$$\square: \mathbb{F}_{\rho} \to \boxed{\mathbb{F}_{\rho}}$$
$$\boxed{a} = g^{a}$$

is an isomorphism of fields.

Computing operations

Almost everything is easy to compute in \mathbb{F}_{ρ} .

- Computing $a + b := g^a g^b$ is efficient.
- Computing <u>a</u> · <u>b</u> requires computing g^{ab} from g^a and g^b. Precisely what O does!
- Computing a from $a \in \mathbb{Z}/p\mathbb{Z}$ is simply computing g^a .
- Computing *a* from \boxed{a} however is hard. In fact, this is precicely solving the DLOG instance (g, g^a) .

Computing operations

Almost everything is easy to compute in \mathbb{F}_{ρ} .

- Computing $a + b := g^a g^b$ is efficient.
- Computing <u>a</u> · <u>b</u> requires computing g^{ab} from g^a and g^b. Precisely what O does!
- Computing a from $a \in \mathbb{Z}/p\mathbb{Z}$ is simply computing g^a .
- Computing *a* from \boxed{a} however is hard. In fact, this is precicely solving the DLOG instance (g, g^a) .

Our Dlog instance...

We were given the Dlog instance (g, g^x) . These objects of G can also be seen as elements of \mathbb{F}_p , namely 1 and \overline{X} . Magic: Using some algebraic relation on \overline{X} , we can recover \overline{X} .

Fix any generator r of $(\mathbb{F}_p)^{\times}$.

- Fix any generator r of $(\mathbb{F}_p)^{\times}$.
- Compute r.

- ▶ Fix any generator r of $(\mathbb{F}_p)^{\times}$.
- Compute *r*.
- ▶ Use generic group algorithms to solve the Dlog instance ([r], [x]) in $([\mathbb{F}_p])^{\times}$.
 - ► This crucially requires O (for multiplication in F_p) and the fact that p 1 is smooth (Pohlig-Hellman in (F_p)×).

- ▶ Fix any generator r of $(\mathbb{F}_p)^{\times}$.
- Compute r.
- ▶ Use generic group algorithms to solve the Dlog instance ([r], [x]) in $([\mathbb{F}_p])^{\times}$.
 - ► This crucially requires O (for multiplication in F_p) and the fact that p 1 is smooth (Pohlig-Hellman in (F_p)[×]).
- Let y be the solution (i.e. $r^{y} = x$). Recover x as r^{y}

A fantastic trick

Limitations

The requirement that p-1 is smooth in Den Boer's reduction almost certainly not hold for random primes. The requirement came from the fact that we needed DLOG to be easy in $(\mathbb{F}_p)^{\times}$.

A fantastic trick

Limitations

The requirement that p-1 is smooth in Den Boer's reduction almost certainly not hold for random primes. The requirement came from the fact that we needed DLOG to be easy in $(\mathbb{F}_p)^{\times}$.

Brilliant idea!

Replace $\mathbb{F}_{\rho}^{\times}$ with some other algebraic group over \mathbb{F}_{ρ} !!

A fantastic trick

Limitations

The requirement that p-1 is smooth in Den Boer's reduction almost certainly not hold for random primes. The requirement came from the fact that we needed DLOG to be easy in $(\mathbb{F}_p)^{\times}$.

Brilliant idea!

Replace \mathbb{F}_{p}^{\times} with some other algebraic group over \mathbb{F}_{p} !!

Theorem (Maurer)

Let G be a group of prime order p, and assume we have access to \mathcal{O} . Assume further that we are given an elliptic curve E with $\#E(\mathbb{F}_p)$ smooth. Then there exists a polynomial time algorithm for solving DLOG in G.

Intuitively, as soon as we know a smooth ordered algebraic group over \mathbb{F}_p (e.g. $E(\mathbb{F}_p)$), DLOG is equivalent to CDH in G.

Black box curve

Corollary

The map

$$P : E(\mathbb{F}_{\rho}) \to E(\mathbb{F}_{\rho}) \\
 P = (x(\rho), y(\rho))$$

is an isomorphism of groups.

Proof of Maurer's Theorem

Assume, for simplicity that $E(\mathbb{F}_p)$ is cyclic.

- Fix any generator P of $E(\mathbb{F}_p)$.
- Compute $P \in E(\mathbb{F}_p)$.
- Compute the point $Q = ([x], -).^2$
- ▶ Use generic group algorithms to solve the Dlog instance (P, Q) in $E(\mathbb{F}_p)$.
- Let y be a solution (i.e. [y]P = Q). Recover x as the x-coordinate of [y]P.

²When x does not define a point on the curve, we can simply replace x by x + d for any d that we know, and proceed as usual.

Are we done?

Limitations

Formally, this does NOT prove that CDH and DLOG are equivalent. But it comes *very* close.

- The existance of a polynomially smooth number in the Hasse interval $[p + 1 2\sqrt{p}, p + 1 + 2\sqrt{p}]$ is only conjectural.
- ▶ Bigger problem: Finding a curve of given order over \mathbb{F}_p is generally hard.
- ln practice, such curves are known for widely used p.
 - See May, Schneider (2023): Dlog is Practically as Hard (or Easy) as DH Solving Dlogs via DH Oracles on EC Standards

Questions?

