
Jonathan Komada Eriksen,  
COSIC, KU Leuven

Effective Group Actions
The road to PEGASIS

Joint work with Pierrick Dartois, Tako Boris Fouotsa, Arthur
Herlédan Le Merdy, Riccardo Invernizzi, Damien Robert,
Ryan Rueger, Frederik Vercauteren, Benjamin Wesolowski

Diffie-Hellman
Setup parameters: , a cyclic group of order H = ⟨h⟩ p

a ∈ (ℤ/pℤ)×

ha

Alice Bob

Diffie-Hellman
Setup parameters: , a cyclic group of order H = ⟨h⟩ p

a ∈ (ℤ/pℤ)× b ∈ (ℤ/pℤ)×

ha

hb

Alice Bob

Diffie-Hellman
Setup parameters: , a cyclic group of order H = ⟨h⟩ p

a ∈ (ℤ/pℤ)× b ∈ (ℤ/pℤ)×

ha

hb

Key = (hb)a Key = (ha)b

Alice Bob

Group Actions

G × X → X
(g, x) → g ⋆ x

Group , Set G X

- For all , we have x ∈ X 1G ⋆ x = x
- For all and , we have x ∈ X g1, g2 ∈ G (g1g2) ⋆ x = g1 ⋆ (g2 ⋆ x)

Group Actions

G × X → X
(g, x) → g ⋆ x

Group , Set G X

- For all , we have x ∈ X 1G ⋆ x = x
- For all and , we have x ∈ X g1, g2 ∈ G (g1g2) ⋆ x = g1 ⋆ (g2 ⋆ x)

Free and Transitive: For all , there exists a unique so x, y ∈ X g ∈ G y = g ⋆ x

Group Actions

G × X → X
(g, x) → g ⋆ x

Group , Set G X

- For all , we have x ∈ X 1G ⋆ x = x
- For all and , we have x ∈ X g1, g2 ∈ G (g1g2) ⋆ x = g1 ⋆ (g2 ⋆ x)

Free and Transitive: For all , there exists a unique so x, y ∈ X g ∈ G y = g ⋆ x
Example: Let be a cyclic group of order .  
Then acts free and transitively on by exponentiation

H p
G = (ℤ/pℤ)× X = H∖{1H}

Diffie-Hellman as a group action
Setup parameters:

, a cyclic group of order H = ⟨h⟩ p

a ∈ (ℤ/pℤ)× b ∈ (ℤ/pℤ)×

ha

hb

Key = (hb)a Key = (ha)b

Setup parameters:
A group , acting on  
a fixed

G X
x ∈ X

a ∈ G
a ⋆ x

Alice Bob Alice Bob

Diffie-Hellman as a group action
Setup parameters:

, a cyclic group of order H = ⟨h⟩ p

a ∈ (ℤ/pℤ)× b ∈ (ℤ/pℤ)×

ha

hb

Key = (hb)a Key = (ha)b

Setup parameters:
A group , acting on  
a fixed

G X
x ∈ X

a ∈ G b ∈ G
a ⋆ x

b ⋆ x

Alice Bob Alice Bob

Diffie-Hellman as a group action
Setup parameters:

, a cyclic group of order H = ⟨h⟩ p

a ∈ (ℤ/pℤ)× b ∈ (ℤ/pℤ)×

ha

hb

Key = (hb)a Key = (ha)b

Setup parameters:
A group , acting on  
a fixed

G X
x ∈ X

a ∈ G b ∈ G
a ⋆ x

b ⋆ x

Key = a ⋆ (b ⋆ x) Key = b ⋆ (a ⋆ x)

Alice Bob Alice Bob

Hard problems:

Discrete logarithm: given , find ha, h a

Hard problems:

Discrete logarithm: given , find ha, h a

Vectorisation: given , find a ⋆ x, x a

Hard problems:

Discrete logarithm: given , find ha, h a

Vectorisation: given , find a ⋆ x, x a

(hopefully)

Protocols from DH: Binary Schnorr
Setup: H = ⟨h0⟩
Secret:  
Public:

s ∈ (ℤ/pℤ)×

h1 := hs
0

h0 h1s
Peggy Victor

Protocols from DH: Binary Schnorr
Setup: H = ⟨h0⟩
Secret:  
Public:

s ∈ (ℤ/pℤ)×

h1 := hs
0

r ∈ (ℤ/pℤ)×
hr := hr

h0 h1

hr

r

s
Peggy Victor

Protocols from DH: Binary Schnorr
Setup: H = ⟨h0⟩
Secret:  
Public:

s ∈ (ℤ/pℤ)×

h1 := hs
0

r ∈ (ℤ/pℤ)×
hr := hr

b ∈ {0,1}b

h0 h1

hr

r

s
Peggy Victor

Protocols from DH: Binary Schnorr
Setup: H = ⟨h0⟩
Secret:  
Public:

s ∈ (ℤ/pℤ)×

h1 := hs
0

r ∈ (ℤ/pℤ)×
hr := hr

b ∈ {0,1}b
c = rs−b

hc
b

?= hr

c

h0 h1

hr

r

s
Peggy Victor

Protocols from DH: Binary Schnorr
Setup: H = ⟨h0⟩
Secret:  
Public:

s ∈ (ℤ/pℤ)×

h1 := hs
0

r ∈ (ℤ/pℤ)×
hr := hr

b ∈ {0,1}b
c = rs−b

hc
b

?= hr

c

h0 h1

hr

r

s
Peggy Victor

rs−1

Protocols from DH: Binary Schnorr
Setup: H = ⟨h0⟩
Secret:  
Public:

s ∈ (ℤ/pℤ)×

h1 := hs
0

hr := hr

b ∈ {0,1}b
c = rs−b

hc
b

?= hr

c

Setup: acting on , fixed G X h0 ∈ X
Secret:  
Public:

s ∈ G
h1 := s ⋆ h0

r ∈ (ℤ/pℤ)×
Peggy Victor Peggy Victor

Protocols from DH: Binary Schnorr
Setup: H = ⟨h0⟩
Secret:  
Public:

s ∈ (ℤ/pℤ)×

h1 := hs
0

hr := hr

b ∈ {0,1}b
c = rs−b

hc
b

?= hr

c

Setup: acting on , fixed G X h0 ∈ X
Secret:  
Public:

s ∈ G
h1 := s ⋆ h0

r ∈ G hr := r ⋆ hr ∈ (ℤ/pℤ)×
Peggy Victor Peggy Victor

Protocols from DH: Binary Schnorr
Setup: H = ⟨h0⟩
Secret:  
Public:

s ∈ (ℤ/pℤ)×

h1 := hs
0

hr := hr

b ∈ {0,1}b
c = rs−b

hc
b

?= hr

c

Setup: acting on , fixed G X h0 ∈ X
Secret:  
Public:

s ∈ G
h1 := s ⋆ h0

r ∈ G hr := r ⋆ h

b ∈ {0,1}b

r ∈ (ℤ/pℤ)×
Peggy Victor Peggy Victor

Protocols from DH: Binary Schnorr
Setup: H = ⟨h0⟩
Secret:  
Public:

s ∈ (ℤ/pℤ)×

h1 := hs
0

hr := hr

b ∈ {0,1}b
c = rs−b

hc
b

?= hr

c

Setup: acting on , fixed G X h0 ∈ X
Secret:  
Public:

s ∈ G
h1 := s ⋆ h0

r ∈ G hr := r ⋆ h

b ∈ {0,1}b
c = rs−b

c ⋆ hb
?= hr

c

r ∈ (ℤ/pℤ)×
Peggy Victor Peggy Victor

CRS

DKS

CSIDH

CSI-FiSh

SCALLOP

PEARL-SCALLOP

SCALLOP-HD Clapoti

PEGASIS

KLaPoTi

1997/2006

2018

2018

2019

2023 2023

2024 2024

2025

Group Action "Timeline"

Group Action "Timeline"
CRS

DKS

CSIDH

CSI-FiSh

SCALLOP

PEARL-SCALLOP

SCALLOP-HD Clapoti

PEGASIS

KLaPoTi

1997/2006

2018

2018

2019

2023 2023

2024 2024

2025

CRS/DKS/CSIDH, a restricted group action

G = cl(ℤ[π]), π2 = − p , a certain set of elliptic curvesX = Ell

G × X → X
[𝔟] ⋆ E = ϕ𝔟(E)

The group: The set:

The action:

CRS/DKS/CSIDH, a restricted group action

G = cl(ℤ[π]), π2 = − p , a certain set of elliptic curvesX = Ell

G × X → X
[𝔟] ⋆ E = ϕ𝔟(E)

The group: The set:

The action:

For any ideal , we can write𝔞 ⊂ 𝔒K

The Class Group

In a unique way (up to ordering)

𝔞 = 𝔭e1
1 ⋅ … ⋅ 𝔭er

r

(Assume is integrally closed)ℤ[π] = 𝔒K

For any ideal , we can write𝔞 ⊂ 𝔒K

The Class Group

In a unique way (up to ordering)

Adding fractional ideals makes into a group.I(𝔒K)

𝔞 = 𝔭e1
1 ⋅ … ⋅ 𝔭er

r

(Assume is integrally closed)ℤ[π] = 𝔒K

For any ideal , we can write𝔞 ⊂ 𝔒K

The Class Group

In a unique way (up to ordering)

Where is the subgroup of principal idealsP(𝔒K) < I(𝔒K)

Adding fractional ideals makes into a group.I(𝔒K)

𝔞 = 𝔭e1
1 ⋅ … ⋅ 𝔭er

r

cl(𝔒K) := I(𝔒K)/P(𝔒K)

The class group is defined as

(Assume is integrally closed)ℤ[π] = 𝔒K

Let π2 = − 53

Example

 can be given the representativescl(ℤ[π])

[⟨1⟩], [⟨2,π − 1⟩], [⟨3,π − 1⟩], [⟨13,π − 5⟩], [⟨17,π − 7⟩], [⟨23,π − 4⟩]

Let π2 = − 53

Example

 can be given the representativescl(ℤ[π])

[⟨1⟩], [⟨2,π − 1⟩], [⟨3,π − 1⟩], [⟨13,π − 5⟩], [⟨17,π − 7⟩], [⟨23,π − 4⟩]

[⟨1⟩]

[⟨2,π − 1⟩]

[⟨3,π − 1⟩]

[⟨17,π − 7⟩]

[⟨23,π − 4⟩]

[⟨13,π − 5⟩]
cl(ℤ[π]) ≃ ℤ/6ℤ

− ⋅ [⟨3,π − 1⟩]

− ⋅ [⟨3,π − 1⟩]

− ⋅ [⟨3,π − 1⟩]− ⋅ [⟨3,π − 1⟩]

− ⋅ [⟨3,π − 1⟩]

− ⋅ [⟨3,π − 1⟩]

CRS/DKS/CSIDH, a restricted group action

G = cl(ℤ[π]), π2 = − p , a certain set of elliptic curvesX = Ell

G × X → X
[𝔟] ⋆ E = ϕ𝔟(E)

The group: The set:

The action:

CRS/DKS/CSIDH, a restricted group action

G = cl(ℤ[π]), π2 = − p , a certain set of elliptic curvesX = Ell

G × X → X
[𝔟] ⋆ E = ϕ𝔟(E)

The group: The set:

The action:

Class Group Action

y2 = x3 + 1

Class Group Action

y2 = x3 + 1

y2 = x3 + 38x + 22

⟨2,π − 1⟩ ⋆ −

Class Group Action

y2 = x3 + 1

y2 = x3 + 38x + 22

⟨2,π − 1⟩ ⋆ −

⟨3,π − 1⟩ ⋆ −

Class Group Action

y2 = x3 + 1

y2 = x3 + 26

y2 = x3 + 38x + 22

⟨2,π − 1⟩ ⋆ −

⟨3,π − 1⟩ ⋆ −

Class Group Action

y2 = x3 + 1

y2 = x3 + 26

y2 = x3 + 32x + 6

y2 = x3 + 38x + 22

⟨2,π − 1⟩ ⋆ −

⟨3,π − 1⟩ ⋆ −

Class Group Action

y2 = x3 + 1

y2 = x3 + 26

y2 = x3 + 32x + 6

y2 = x3 + 38x + 22

⟨2,π − 1⟩ ⋆ −

⟨3,π − 1⟩ ⋆ −

Class Group Action

y2 = x3 + 1

y2 = x3 + 26

y2 = x3 + 32x + 6

y2 = x3 + 38x + 22

y2 = x3 + 24x + 42

y2 = x3 + 22x + 5

⟨2,π − 1⟩ ⋆ −

⟨3,π − 1⟩ ⋆ −

CRS/DKS/CSIDH, a restricted group action

G × X → X
[𝔟] ⋆ E = ϕ𝔟(E)

The action:

Can only compute  
smooth degree isogenies

Can only compute the action of
smooth normed ideals

CRS/DKS/CSIDH, a restricted group action

G × X → X
[𝔟] ⋆ E = ϕ𝔟(E)

The action:

Can only compute  
smooth degree isogenies

Can only compute the action of
smooth normed ideals

Fix generators , a vector  
represents the element . 
 
Can evaluate the action of whenever is small

G = ⟨g1, g2, …, gr⟩ e = [e1, …, er] ∈ ℤr

g = ge1
1 ge2

2 …ger
r

e ∈ ℤr ∥e∥

CRS/DKS/CSIDH, a restricted group action

G × X → X
[𝔟] ⋆ E = ϕ𝔟(E)

The action:

Can only compute  
smooth degree isogenies

Can only compute the action of
smooth normed ideals

Fix generators , a vector  
represents the element . 
 
Can evaluate the action of whenever is small

G = ⟨g1, g2, …, gr⟩ e = [e1, …, er] ∈ ℤr

g = ge1
1 ge2

2 …ger
r

e ∈ ℤr ∥e∥

Binary Schnorr with CSIDH
Setup: acting on , fixed cl(ℤ[π]) X E0 ∈ X

Secret:  
Public:

s = [s1, …s2] ∈ ℤr

E1 := s ⋆ E0

e = [e1, …, er] ∈ ℤr, ei ∈ {−1,0,1}
Er := e ⋆ E0

b ∈ {0,1}b

c = e − b ⋅ s

c ⋆ Eb
?= Er

c

Binary Schnorr with CSIDH
Example: Secret: s = [1, − 1,0]

e = [1,1, − 1]
Er := e ⋆ E0

Round 1

Binary Schnorr with CSIDH
Example: Secret: s = [1, − 1,0]

e = [1,1, − 1]
Er := e ⋆ E0

b = 1b

 c = e − b ⋅ s
= [0,2, − 1]

Round 1

Binary Schnorr with CSIDH
Example: Secret: s = [1, − 1,0]

e = [1,1, − 1]
Er := e ⋆ E0

b = 1b

 c = e − b ⋅ s
= [0,2, − 1]

c ⋆ Eb
?= Er

c

Round 1

Attacker saw: 
 c = [0,2, − 1]

Binary Schnorr with CSIDH
Example: Secret: s = [1, − 1,0]

e = [1,1, − 1]
Er := e ⋆ E0

b = 1b

 c = e − b ⋅ s
= [0,2, − 1]

c ⋆ Eb
?= Er

c

e = [−1, − 1,1]
Round 1 Round 2

Attacker saw: 
 c = [0,2, − 1]

c = [−2,0,1]

Er := e ⋆ E0

Binary Schnorr with CSIDH
Example: Secret: s = [1, − 1,0]

e = [1,1, − 1]
Er := e ⋆ E0

b = 1b

 c = e − b ⋅ s
= [0,2, − 1]

c ⋆ Eb
?= Er

c

e = [−1, − 1,1]

b = 1b

 c = e − b ⋅ s
= [−2,0,1]

Round 1 Round 2

Attacker saw: 
 c = [0,2, − 1]

c = [−2,0,1]

Er := e ⋆ E0

Binary Schnorr with CSIDH
Example: Secret: s = [1, − 1,0]

e = [1,1, − 1]
Er := e ⋆ E0

b = 1b

 c = e − b ⋅ s
= [0,2, − 1]

c ⋆ Eb
?= Er

c

e = [−1, − 1,1]

b = 1b

 c = e − b ⋅ s
= [−2,0,1]

c ⋆ Eb
?= Er

c

Round 1 Round 2

Attacker saw: 
 c = [0,2, − 1]

c = [−2,0,1]
Oops...

Er := e ⋆ E0

Group Action "Timeline"
CRS

DKS

CSIDH

CSI-FiSh

SCALLOP

PEARL-SCALLOP

SCALLOP-HD Clapoti

PEGASIS

KLaPoTi

1997/2006

2018

2018

2019

2023 2023

2024 2024

2025

CSi-FiSh: REGA -> EGA

ℤr G 0
[1,0,…,0] g1
[0,1,…,0] g2

Assume , order G = ⟨g1⟩ N
Goal: Evaluate a "uniformly random" element of the form [d,0,…,0]

G = ⟨g1, g2, …, gr⟩

CSi-FiSh: REGA -> EGA

ℤr G 0
[1,0,…,0] g1
[0,1,…,0] g2

Assume , order G = ⟨g1⟩ N
For each , compute , so that gi si gi = gsi

1

ℤr0

etc...

G = ⟨g1, g2, …, gr⟩

CSi-FiSh: REGA -> EGA

ℤr G 0
[1,0,…,0] g1
[0,1,…,0] g2

Assume , order G = ⟨g1⟩ N
For each , compute , so that gi si gi = gsi

1

ℤr0

[1,0,…,0] [N,0,…,0]
[0,1,…,0] [s2, − 1,…,0]

etc...

etc...

G = ⟨g1, g2, …, gr⟩

CSi-FiSh: REGA -> EGA

ℤr G 0
[1,0,…,0] g1
[0,1,…,0] g2

Assume , order G = ⟨g1⟩ N
For each , compute , so that gi si gi = gsi

1

ℤr0

[1,0,…,0] [N,0,…,0]
[0,1,…,0] [s2, − 1,…,0]

etc...

etc...

, 
 
G ≃ ℤr /L

L =

N 0 0 … 0
s2 −1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
sr 0 0 … −1

G = ⟨g1, g2, …, gr⟩

CSi-FiSh: REGA -> EGA

, 
 
G ≃ ℤr /L

L =

N 0 0 … 0
s2 −1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
sr 0 0 … −1

Goal: Evaluate a "uniformly random" element of the form

Step 1: Compute a bunch of DLOGs in

Step 2: Compute reduced basis of

Step 3: Compute closest to

Step 4: Evaluate the element

e = [d,0,…,0]

G

L

f ∈ L e

e − f

CSi-FiSh: REGA -> EGA

, 
 
G ≃ ℤr /L

L =

N 0 0 … 0
s2 −1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
sr 0 0 … −1

Goal: Evaluate a "uniformly random" element of the form

Step 1: Compute a bunch of DLOGs in

Step 2: Compute reduced basis of

Step 3: Compute closest to

Step 4: Evaluate the element

e = [d,0,…,0]

G

L

f ∈ L e

e − f

One time computations!

CSi-FiSh: REGA -> EGA

, 
 
G ≃ ℤr /L

L =

N 0 0 … 0
s2 −1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
sr 0 0 … −1

Goal: Evaluate a "uniformly random" element of the form

Step 1: Compute a bunch of DLOGs in

Step 2: Compute reduced basis of

Step 3: Compute closest to

Step 4: Evaluate the element

e = [d,0,…,0]

G

L

f ∈ L e

e − f

One time computations!

CSi-FiSh: REGA -> EGA

, 
 
G ≃ ℤr /L

L =

N 0 0 … 0
s2 −1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
sr 0 0 … −1

Goal: Evaluate a "uniformly random" element of the form

Step 1: Compute a bunch of DLOGs in

Step 2: Compute reduced basis of

Step 3: Compute closest to

Step 4: Evaluate the element

e = [d,0,…,0]

G

L

f ∈ L e

e − f

Result: CSIDH-512 can be made unrestricted!

One time computations!

Debated quantum security :(

Group Action "Timeline"
CRS

DKS

CSIDH

CSI-FiSh

SCALLOP

PEARL-SCALLOP

SCALLOP-HD Clapoti

PEGASIS

KLaPoTi

1997/2006

2018

2018

2019

2023 2023

2024 2024

2025

SCALLOP++

Step 1: Compute a bunch of DLOGs in

Step 2: Compute reduced basis of

Step 3: Compute closest to

Step 4: Evaluate the element

G

L

f ∈ L e

e − f

G = ⟨g1, g2, …, gr⟩

SCALLOP++

Step 1: Compute a bunch of DLOGs in

Step 2: Compute reduced basis of

Step 3: Compute closest to

Step 4: Evaluate the element

G

L

f ∈ L e

e − f

G = ⟨g1, g2, …, gr⟩

SCALLOP++

Step 1: Compute a bunch of DLOGs in

Step 2: Compute reduced basis of

Step 3: Compute closest to

Step 4: Evaluate the element

G

L

f ∈ L e

e − f

CSIDH-2000+: 
 too large  

- Step 2 infeasible 
 too small 

- Step 4 infeasible

r

r

G = ⟨g1, g2, …, gr⟩

Group Action "Timeline"
CRS

DKS

CSIDH

CSI-FiSh

SCALLOP

PEARL-SCALLOP

SCALLOP-HD Clapoti

PEGASIS

KLaPoTi

1997/2006

2018

2018

2019

2023 2023

2024 2024

2025

Interlude: Abelian Varieties in Isogeny-Based Cryptography

Φ : E1 × E2 → F1 × F2

Interlude: Abelian Varieties in Isogeny-Based Cryptography

E1

E2

F1

F2

If = , then deg Φ = deg φ + deg ψ

Overly simplified: Can evaluate arbitrary degree , 
by embedding it in higher dimensional isogenies.

φ

Φ :
φ

ψ

Group Action "Timeline"
CRS

DKS

CSIDH

CSI-FiSh

SCALLOP

PEARL-SCALLOP

SCALLOP-HD Clapoti

PEGASIS

KLaPoTi

1997/2006

2018

2018

2019

2023 2023

2024 2024

2025

Clapoti

Goal: Evaluate action of  
 
Assume we have: , satisfying:  
 -  
 -

[𝔞]

𝔟, 𝔠
[𝔞] = [𝔟] = [𝔠]
n(𝔟) + n(𝔠) = 2e

Clapoti

Goal: Evaluate action of  
 
Assume we have: , satisfying:  
 -  
 -

[𝔞]

𝔟, 𝔠
[𝔞] = [𝔟] = [𝔠]
n(𝔟) + n(𝔠) = 2e

E

E

E𝔞

E𝔞

φ𝔟

φ𝔠
φ𝔠

φ𝔟

Φ :

Clapoti

Goal: Evaluate action of  
 
Assume we have: , satisfying:  
 -  
 -

[𝔞]

𝔟, 𝔠
[𝔞] = [𝔟] = [𝔠]
n(𝔟) + n(𝔠) = 2e

E

E

E𝔞

E𝔞

φ𝔟

φ𝔠
φ𝔠

φ𝔟

Φ :

Can compute from Φ ker Φ = {(n(𝔟)P, γ(P)) ∈ E × E ∣ P ∈ E[2e]}

γ = φ𝔟 ∘ φ𝔠

Clapoti/KLaPoTi/PEGASIS
Goal: Evaluate action of  
 
Assume we have: , satisfying:  
 -  
 -

[𝔞]

𝔟, 𝔠
[𝔞] = [𝔟] = [𝔠]
n(𝔟) + n(𝔠) = 2e

- Clapoti: Can drop this requirement on , by going to dimension 8 
- Isogenies in dimension 8 are (for now) not practical

- KLaPoTi: Finding can be done with a known algorithm (KLPT)! 
- needs to be quite large (compared to

- PEGASIS: Original Clapoti + several tricks = works in dimension 4 
- Seems to be the right middle ground!

𝔟, 𝔠

𝔟, 𝔠
2e disc(ℤ[π])

Clapoti/KLaPoTi/PEGASIS
Goal: Evaluate action of  
 
Assume we have: , satisfying:  
 -  
 -

[𝔞]

𝔟, 𝔠
[𝔞] = [𝔟] = [𝔠]
n(𝔟) + n(𝔠) = 2e

- Clapoti: Can drop this requirement on , by going to dimension 8 
- Isogenies in dimension 8 are (for now) not practical

- KLaPoTi: Finding can be done with a known algorithm (KLPT)! 
- needs to be quite large (compared to

- PEGASIS: Original Clapoti + several tricks = works in dimension 4 
- Seems to be the right middle ground!

𝔟, 𝔠

𝔟, 𝔠
2e disc(ℤ[π])

Clapoti/KLaPoTi/PEGASIS
Goal: Evaluate action of  
 
Assume we have: , satisfying:  
 -  
 -

[𝔞]

𝔟, 𝔠
[𝔞] = [𝔟] = [𝔠]
n(𝔟) + n(𝔠) = 2e

- Clapoti: Can drop this requirement on , by going to dimension 8 
- Isogenies in dimension 8 are (for now) not practical

- KLaPoTi: Finding can be done with a known algorithm (KLPT)! 
- needs to be quite large (compared to

- PEGASIS: Original Clapoti + several tricks = works in dimension 4 
- Seems to be the right middle ground!

𝔟, 𝔠

𝔟, 𝔠
2e disc(ℤ[π])

PEGASIS - Results

PEGASIS works over , and can be instantiated Frobenius!𝔽p

Conclusion: (Unrestricted) effective group actions now exists,  
 enabling many (so far, theoretical) constructions!

Thank you!
Questions?

