Effective Group Actions The road to **PEGASIS**

Jonathan Komada Eriksen, **COSIC**, KU Leuven

Joint work with Pierrick Dartois, Tako Boris Fouotsa, Arthur Herlédan Le Merdy, Riccardo Invernizzi, Damien Robert, Ryan Rueger, Frederik Vercauteren, Benjamin Wesolowski

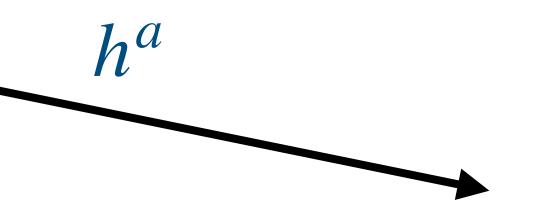
Diffie-Hellman

Setup parameters: $H = \langle h \rangle$, a cyclic group of order p

Alice

 $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$

Bob



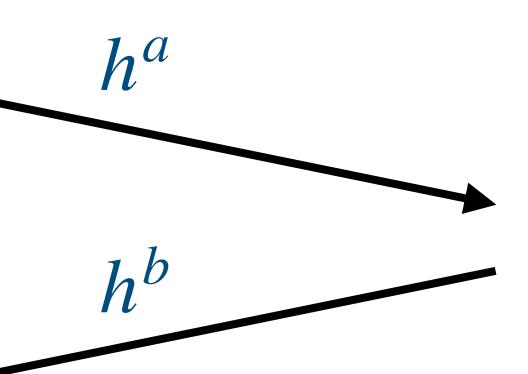
Diffie-Hellman

Setup parameters: $H = \langle h \rangle$, a cyclic group of order p

Alice

 $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$

Bob $b \in (\mathbb{Z}/p\mathbb{Z})^{\times}$

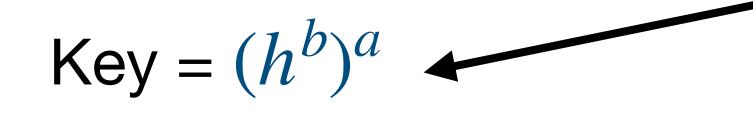


Diffie-Hellman

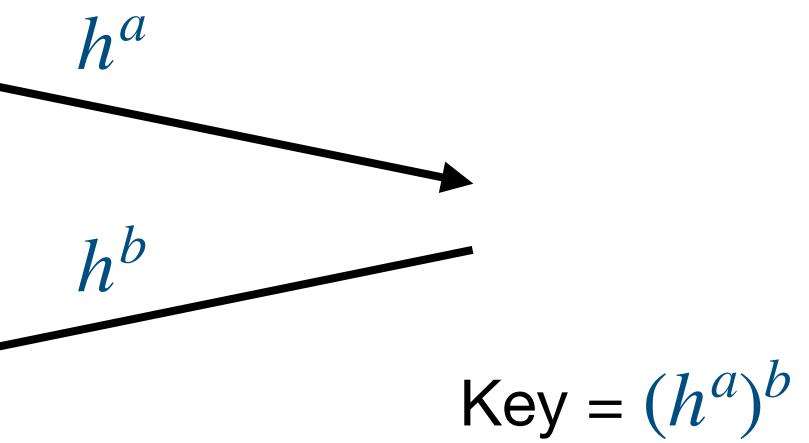
Setup parameters: $H = \langle h \rangle$, a cyclic group of order p

Alice

 $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$



Bob $b \in (\mathbb{Z}/p\mathbb{Z})^{\times}$



Group Actions

Group *G*, Set *X*

 $G \times X \to X$ $(g, x) \rightarrow g \star x$

- For all $x \in X$, we have $1_G \star x = x$

- For all $x \in X$ and $g_1, g_2 \in G$, we have $(g_1g_2) \star x = g_1 \star (g_2 \star x)$

Group Actions

Group G, Set X

 $G \times X \to X$ $(g, x) \rightarrow g \star x$

- For all $x \in X$, we have $1_G \star x = x$
- For all $x \in X$ and $g_1, g_2 \in G$, we have $(g_1g_2) \star x = g_1 \star (g_2 \star x)$

Free and Transitive: For all $x, y \in X$, there exists a unique $g \in G$ so $y = g \star x$

Group Actions

Group G, Set X

 $G \times X \to X$ $(g, x) \rightarrow g \star x$

- For all $x \in X$, we have $1_G \star x = x$
- For all $x \in X$ and $g_1, g_2 \in G$, we have $(g_1g_2) \star x = g_1 \star (g_2 \star x)$

Example: Let *H* be a cyclic group of order *p*.

- Free and Transitive: For all $x, y \in X$, there exists a unique $g \in G$ so $y = g \star x$
- Then $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$ acts free and transitively on $X = H \setminus \{1_H\}$ by exponentiation

Diffie-Hellman as a group action

Setup parameters:

Alice

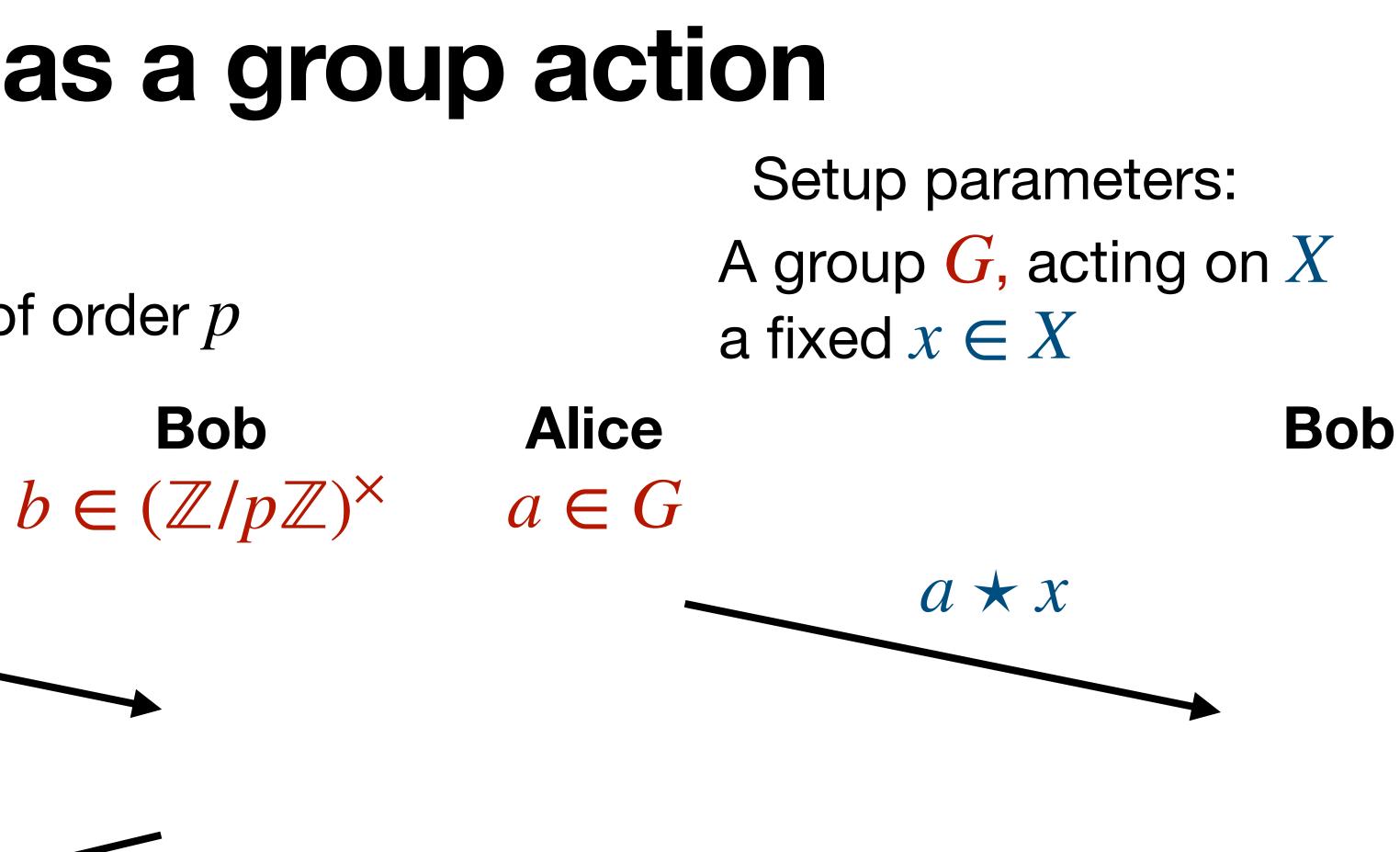
 $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$

 $\mathsf{Key} = (h^b)^a$

 $H = \langle h \rangle$, a cyclic group of order p

 h^a

 h^b



 $\mathsf{Key} = (h^a)^b$

Bob

Diffie-Hellman as a group action

Setup parameters:

Alice

 $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$

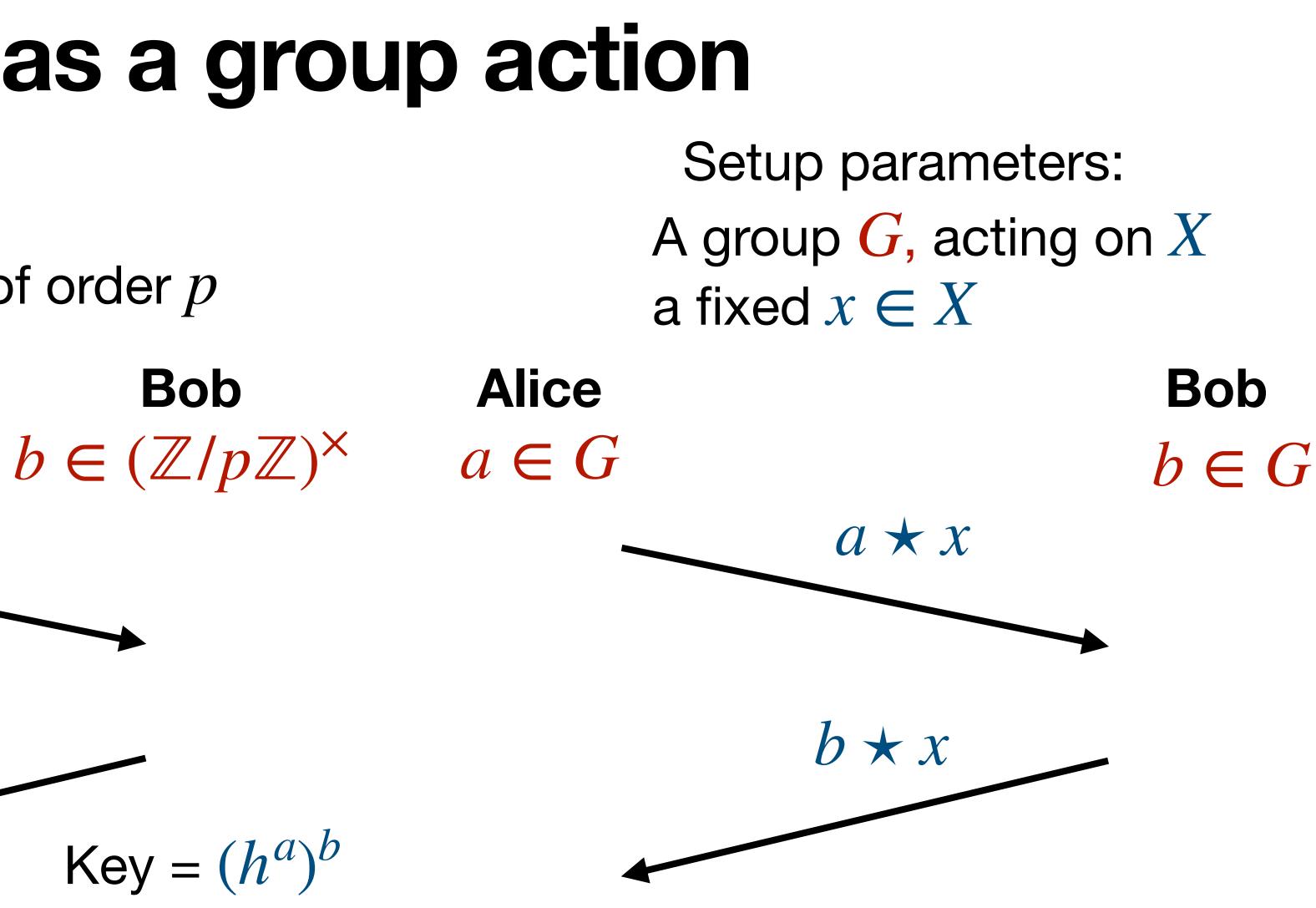
 $\mathsf{Key} = (h^b)^a$

 $H = \langle h \rangle$, a cyclic group of order p

 h^a

 h^b

Bob



Diffie-Hellman as a group action

Setup parameters:

Alice

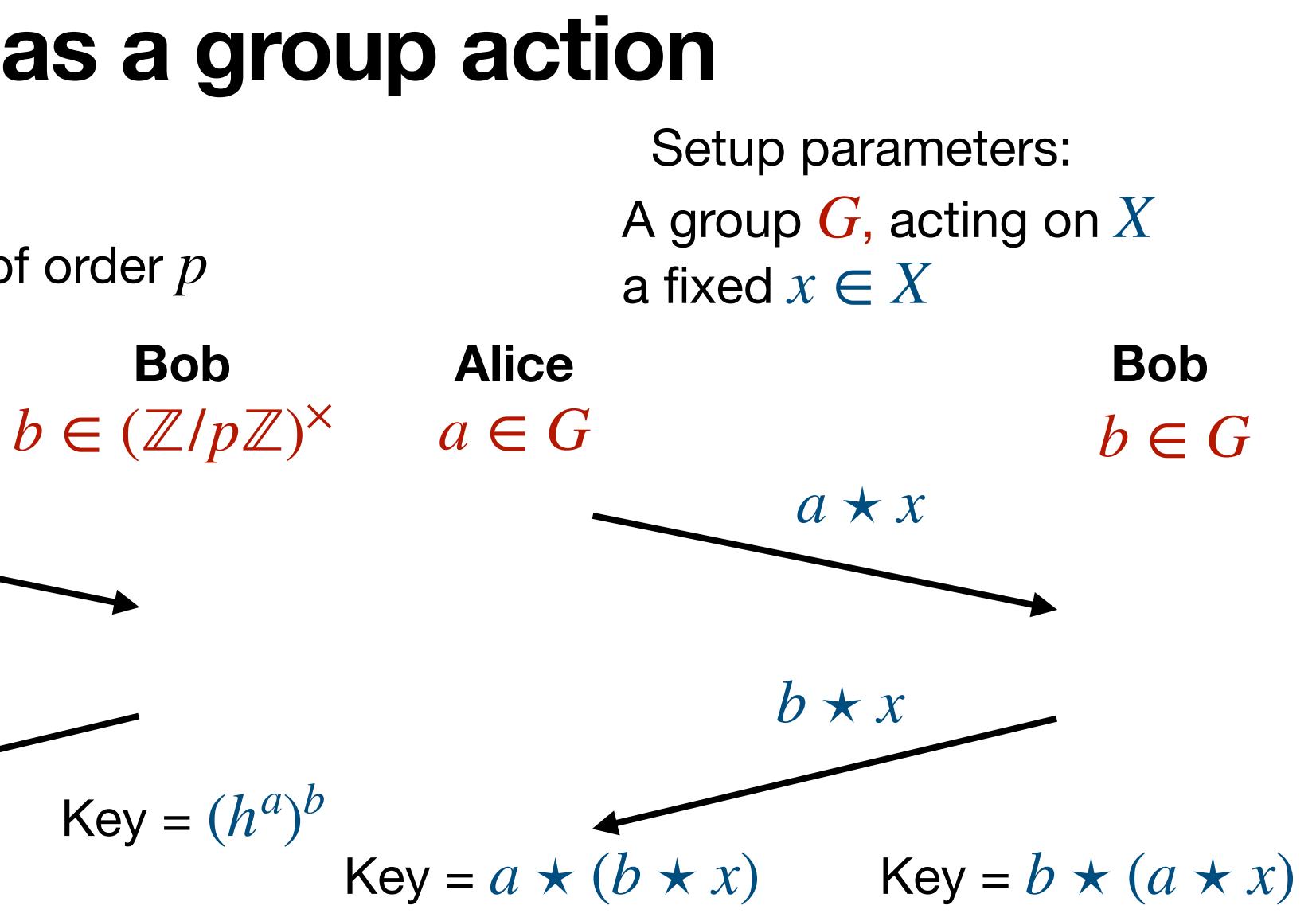
 $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$

 $\mathsf{Key} = (h^b)^a$

 $H = \langle h \rangle$, a cyclic group of order p

 h^a

 h^b



Hard problems:

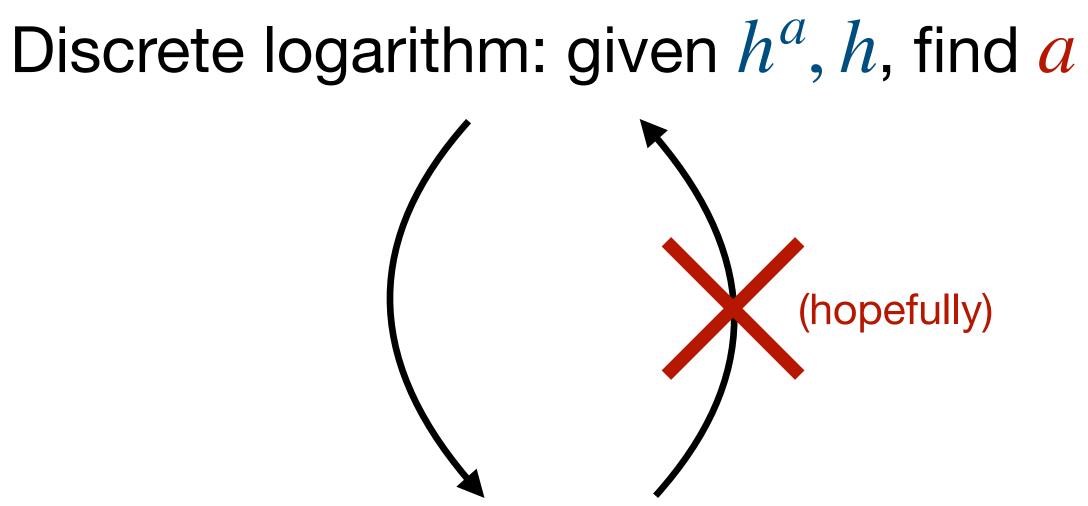
Discrete logarithm: given h^a , h, find a

Hard problems:

Discrete logarithm: given h^a , h, find a

Vectorisation: given $a \star x, x$, find *a*

Hard problems:



Vectorisation: given $a \star x, x$, find *a*

Setup: $H = \langle h_0 \rangle$ Secret: $s \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ Public: $h_1 := h_0^s$

Peggy

Victor

 $h_0 \quad \cdots \quad h_1$

Setup: $H = \langle h_0 \rangle$

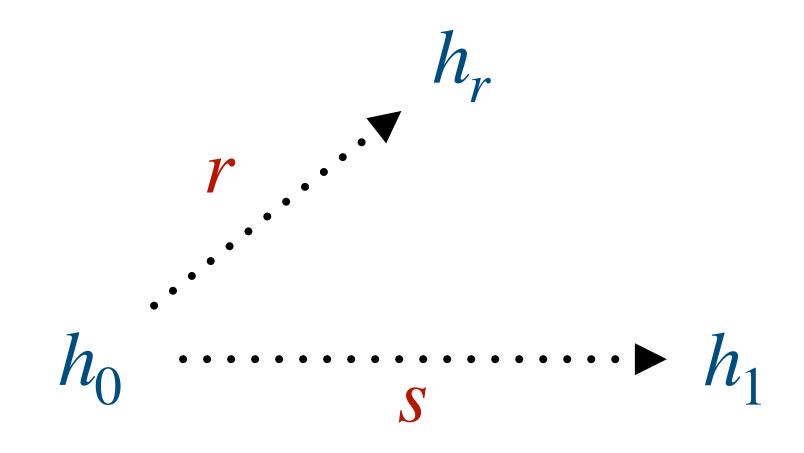
Secret: $s \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ Public: $h_1 := h_0^s$

 $h_r := h^r$

Peggy

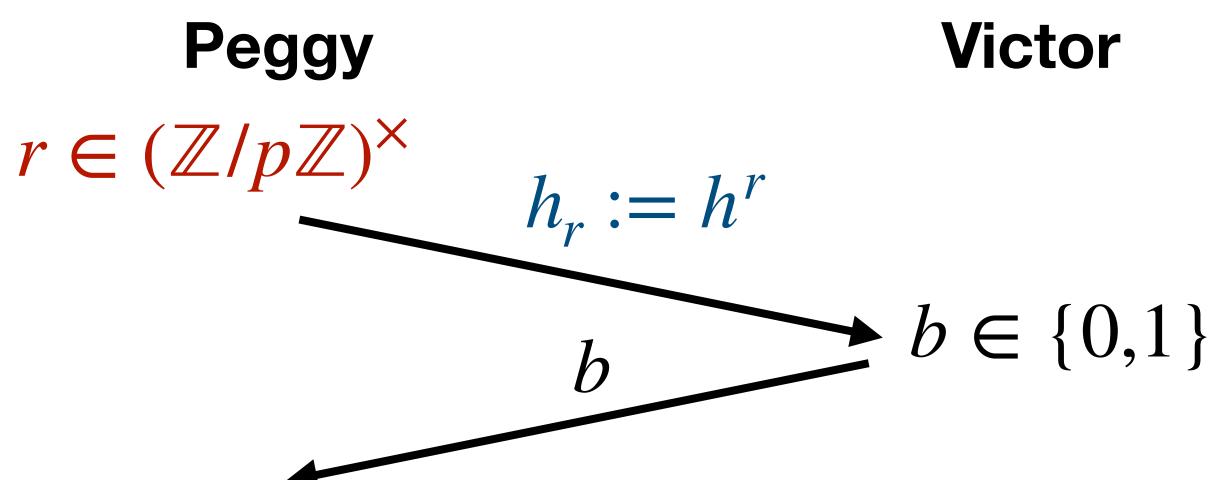
 $r \in (\mathbb{Z}/p\mathbb{Z})^{\times}$

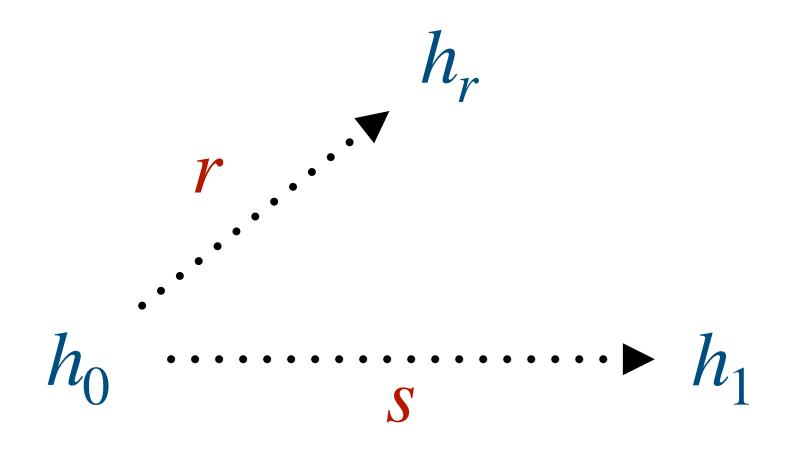
Victor



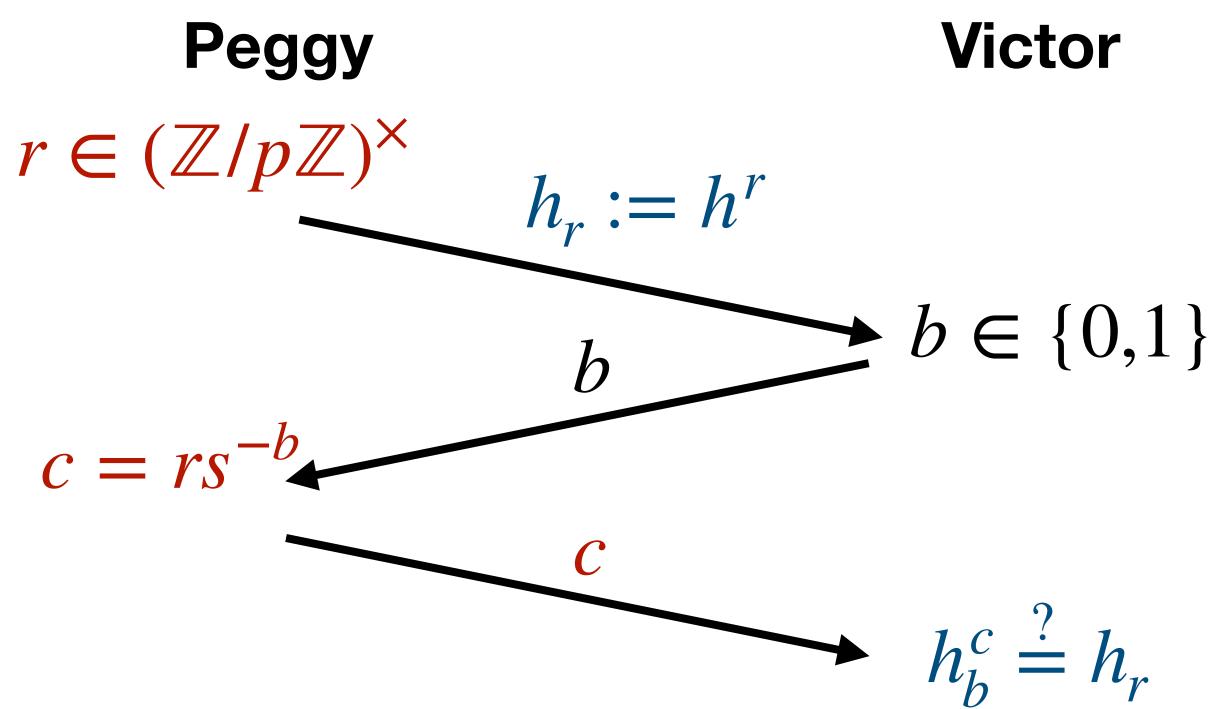
Setup: $H = \langle h_0 \rangle$

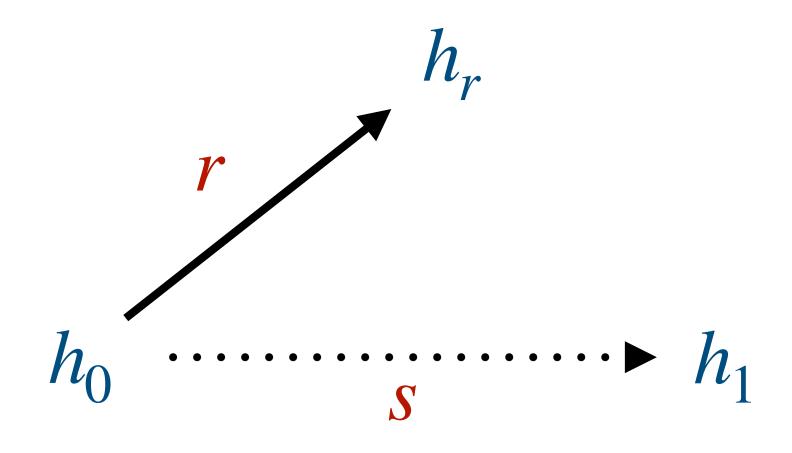
Secret: $s \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ Public: $h_1 := h_0^s$



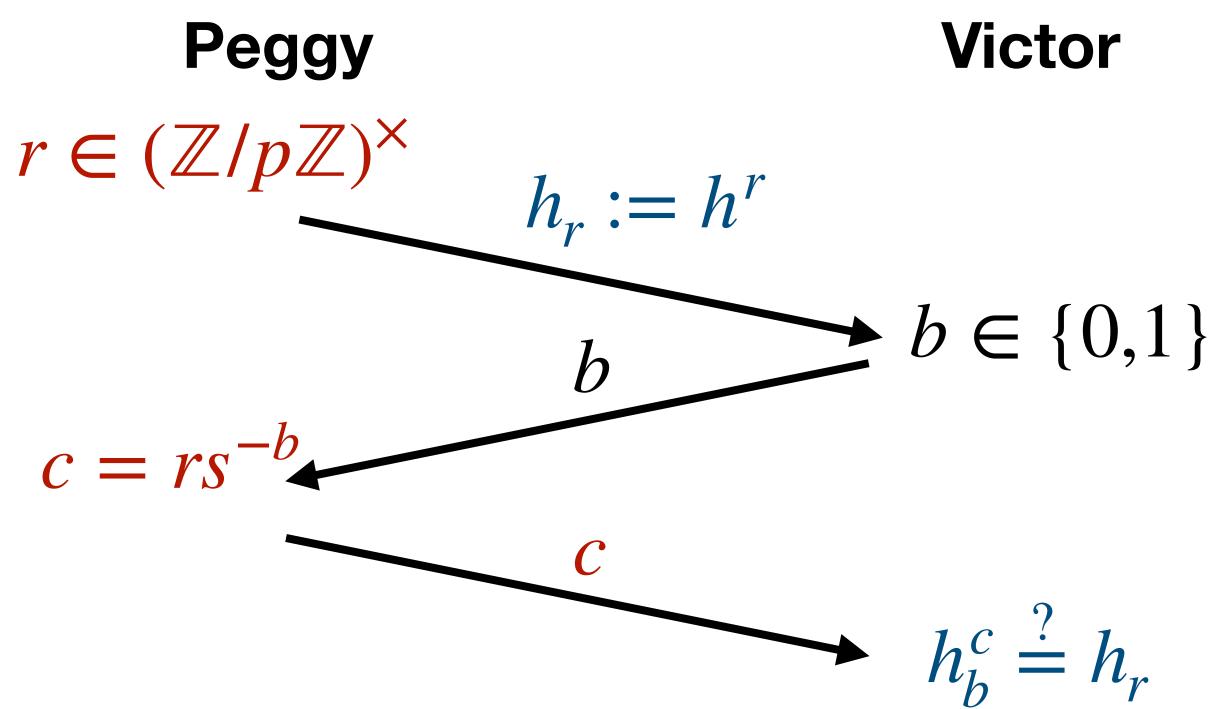


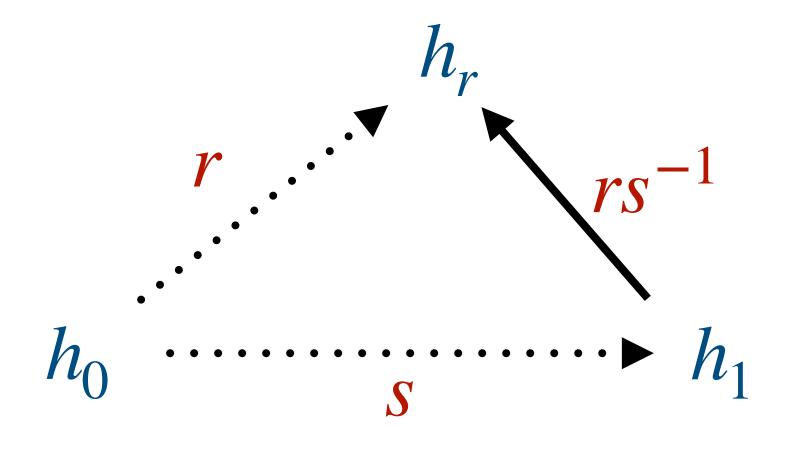
- Setup: $H = \langle h_0 \rangle$
- Secret: $s \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ Public: $h_1 := h_0^s$



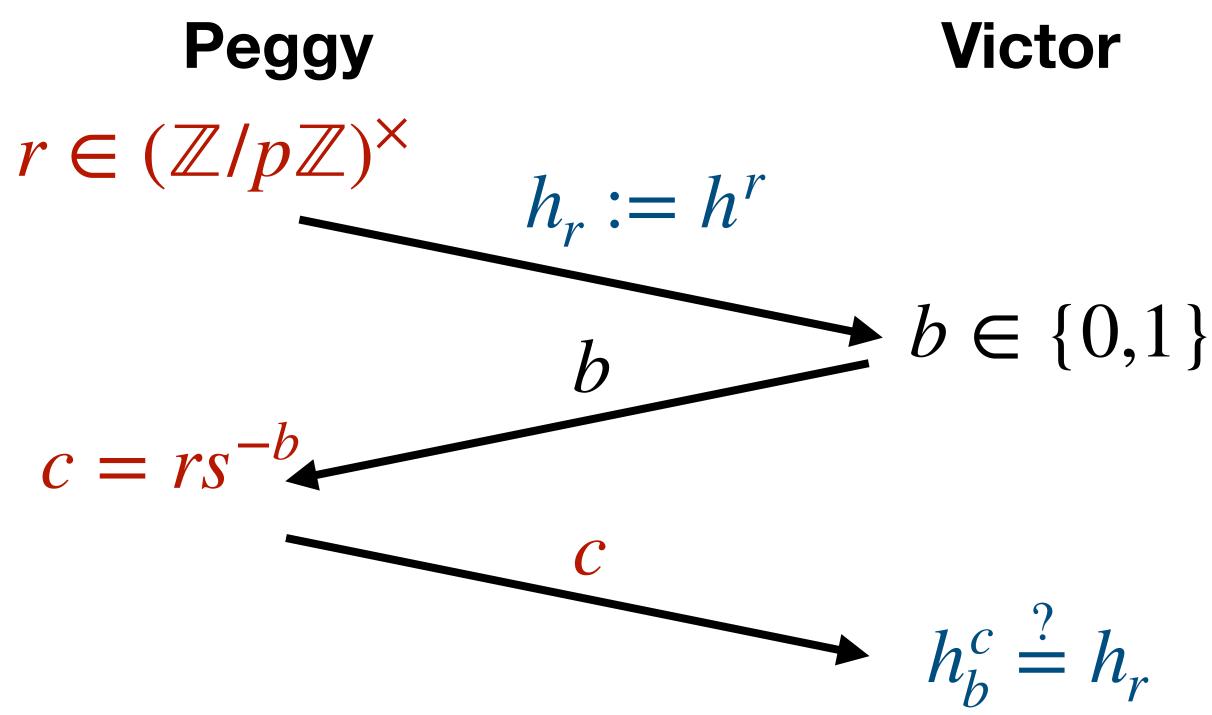


- Setup: $H = \langle h_0 \rangle$
- Secret: $s \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ Public: $h_1 := h_0^s$





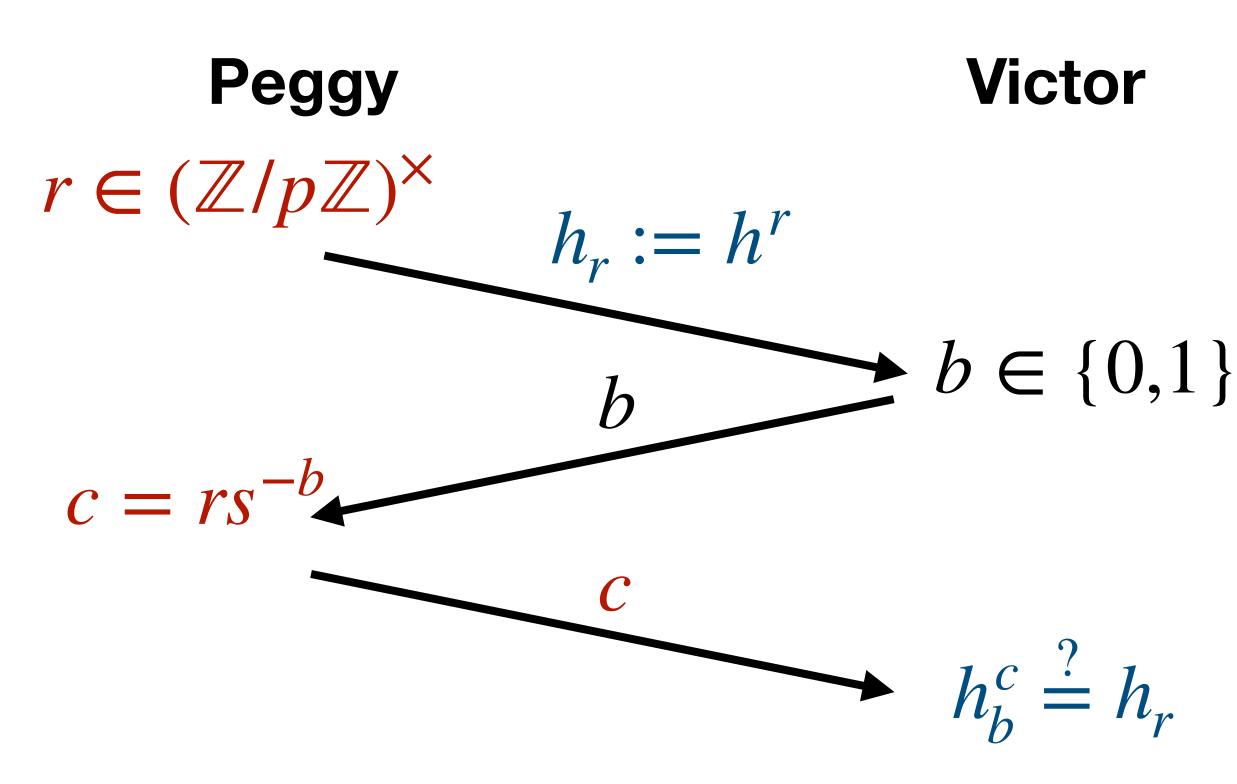
- Setup: $H = \langle h_0 \rangle$
- Secret: $s \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ Public: $h_1 := h_0^s$



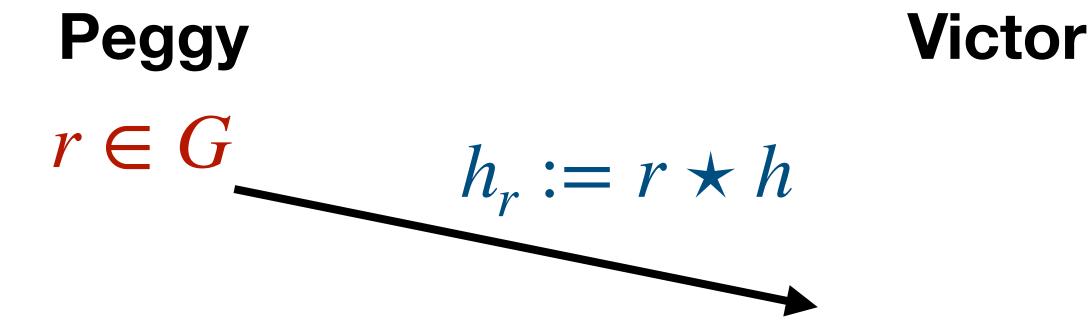
Setup: G acting on X, fixed $h_0 \in X$ Secret: $s \in G$ Public: $h_1 := s \star h_0$

Victor Peggy

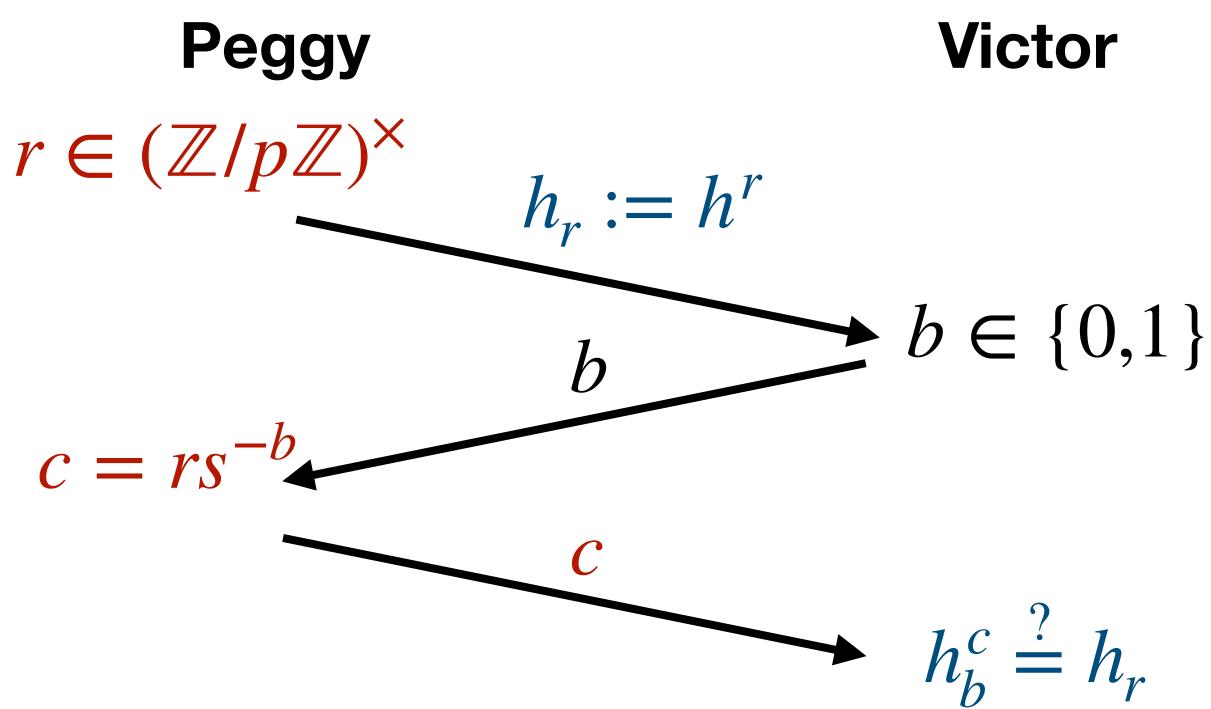
- Setup: $H = \langle h_0 \rangle$
- Secret: $s \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ Public: $h_1 := h_0^s$



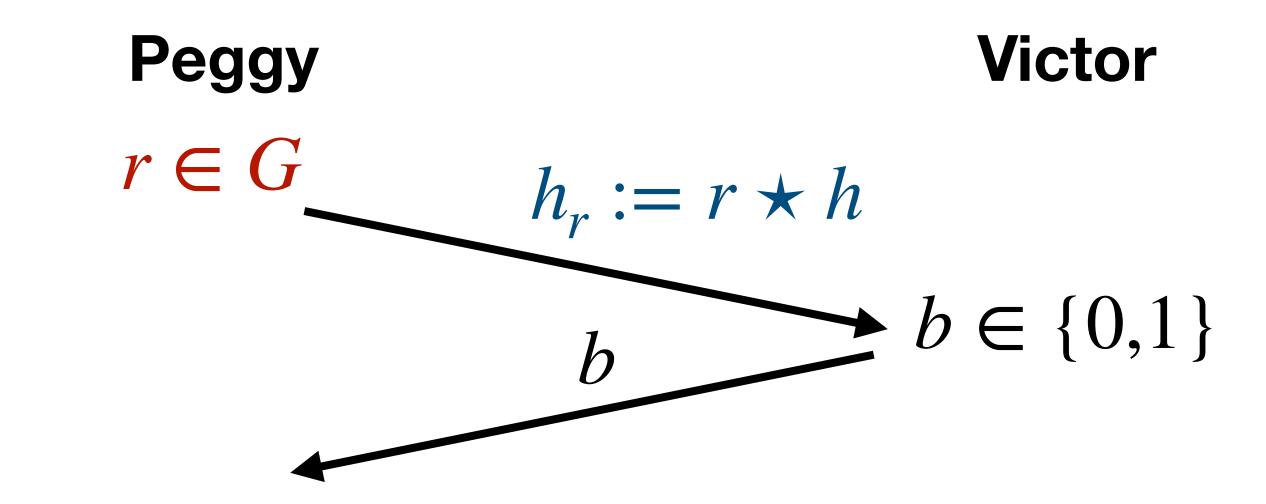
Setup: G acting on X, fixed $h_0 \in X$ Secret: $s \in G$ Public: $h_1 := s \star h_0$



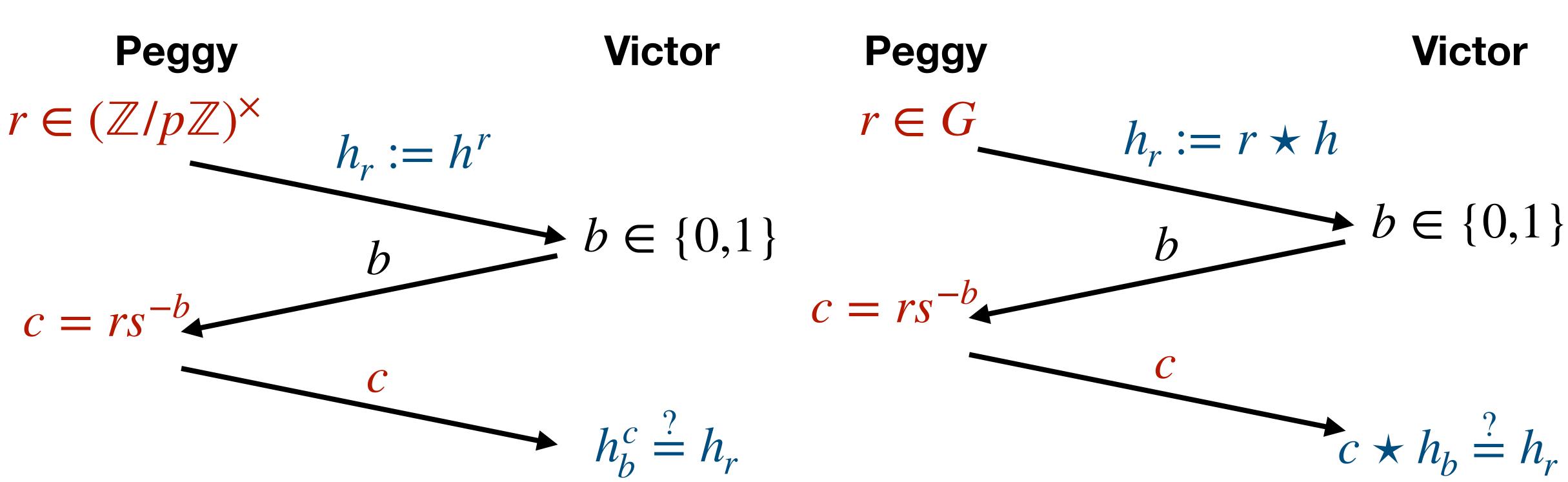
- Setup: $H = \langle h_0 \rangle$
- Secret: $s \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ Public: $h_1 := h_0^s$



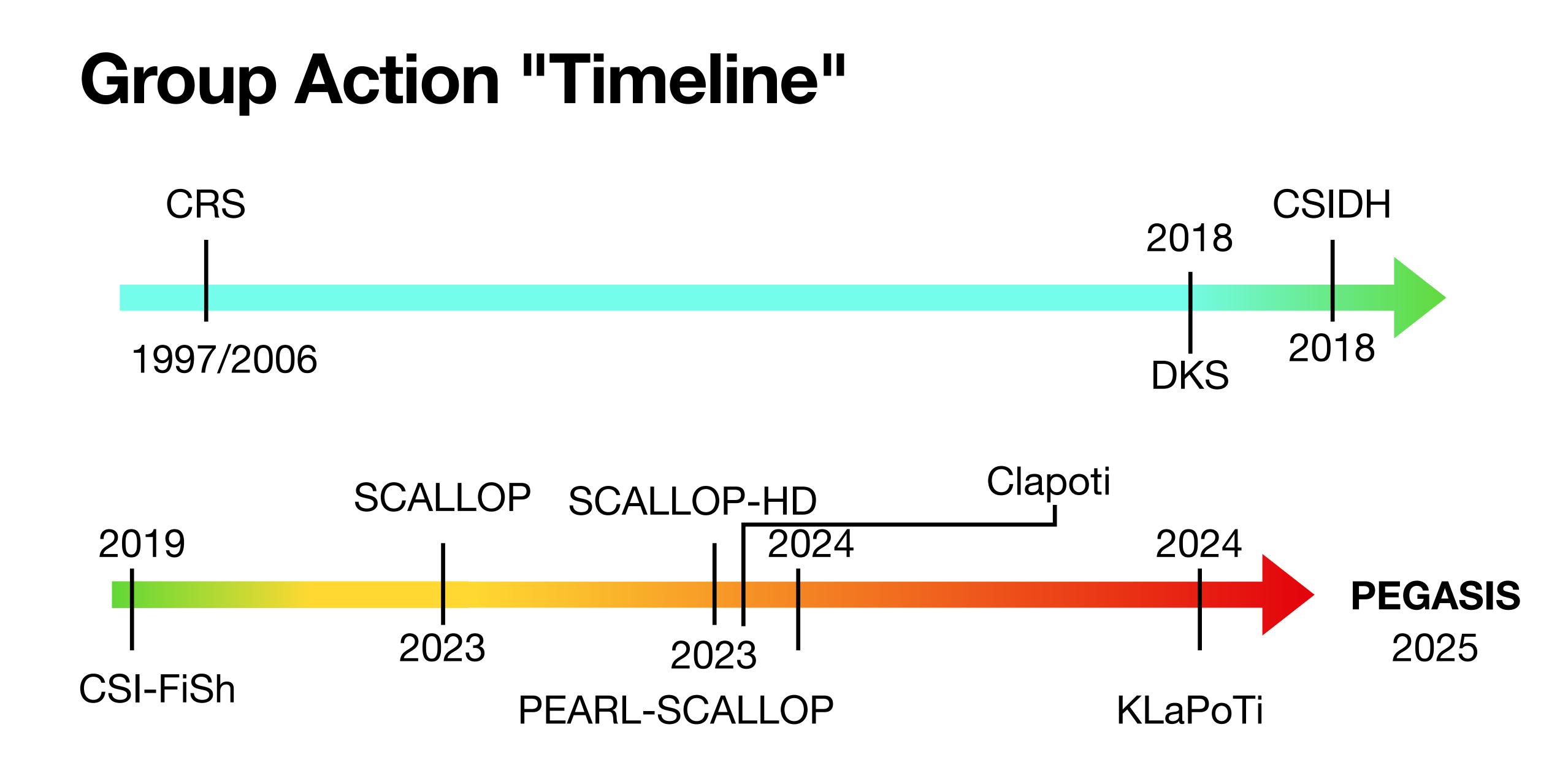
Setup: *G* acting on *X*, fixed $h_0 \in X$ Secret: $s \in G$ Public: $h_1 := s \star h_0$



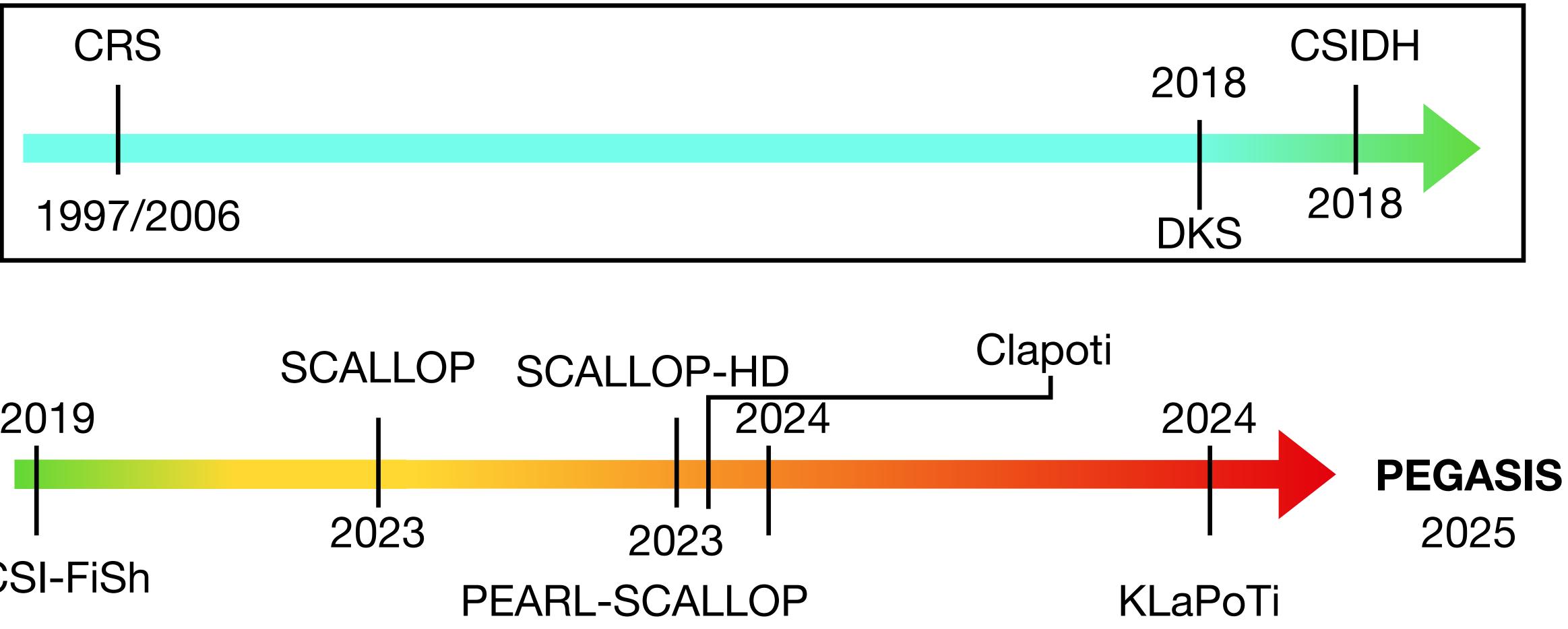
- Setup: $H = \langle h_0 \rangle$
- Secret: $s \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ Public: $h_1 := h_0^s$

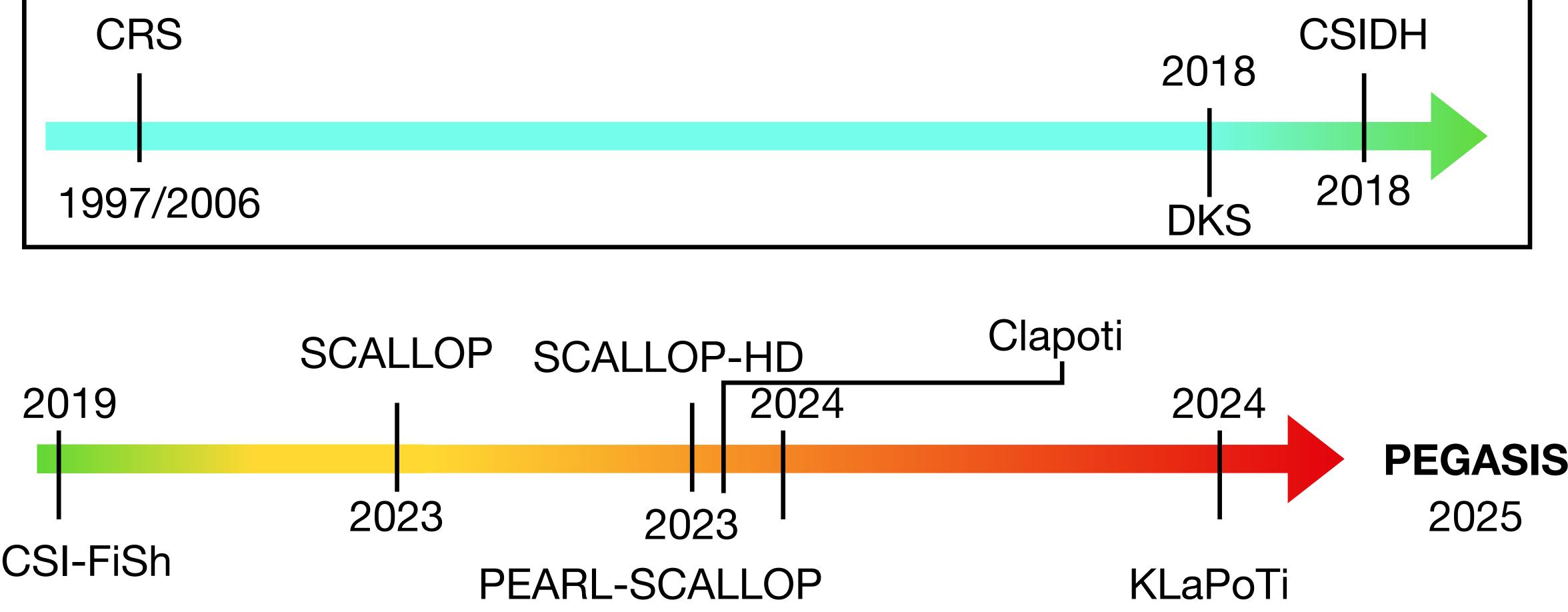


Setup: G acting on X, fixed $h_0 \in X$ Secret: $s \in G$ Public: $h_1 := s \star h_0$



Group Action "Timeline"





CRS/DKS/CSIDH, a restricted group action

The group: $G = cl(\mathbb{Z}[\pi]), \pi^2 = -p$

The action:

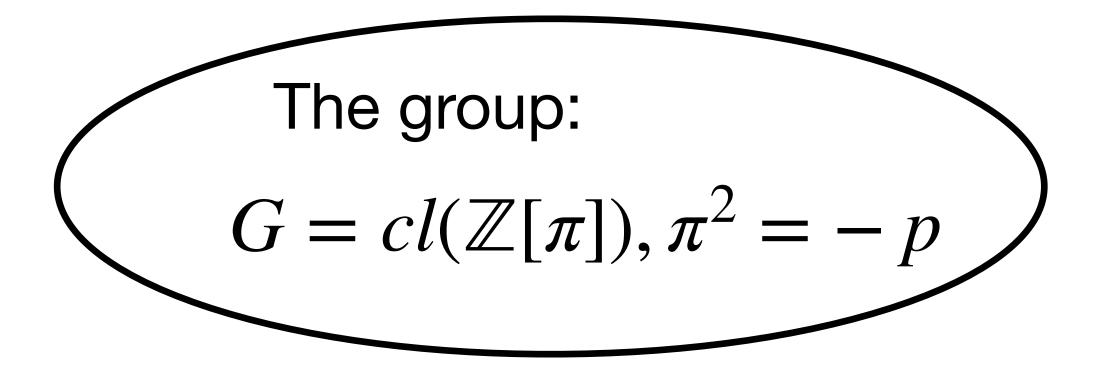
- $G \times X \to X$
- $[\mathfrak{b}] \star E = \phi_{\mathfrak{b}}(E)$

The set:

X = Ell, a certain set of elliptic curves

 $\rightarrow X$ $= \phi_{\mathfrak{b}}(E)$

CRS/DKS/CSIDH, a restricted group action



The action:

- $G \times X \to X$
- $[\mathfrak{b}] \star E = \phi_{\mathfrak{b}}(E)$

The set:

X = Ell, a certain set of elliptic curves

 $\rightarrow X$ $= \phi_{\mathfrak{b}}(E)$

The Class Group

- For any ideal $\mathfrak{a} \subset \mathfrak{D}_{K}$, we can write
 - $\mathbf{a} = \mathbf{p}_1^{e_1} \cdot \ldots \cdot \mathbf{p}_r^{e_r}$
 - In a unique way (up to ordering)

(Assume $\mathbb{Z}[\pi] = \mathfrak{D}_{K}$ is integrally closed)

The Class Group

- For any ideal $\mathfrak{a} \subset \mathfrak{D}_{K}$, we can write
 - $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_r^{e_r}$
 - In a unique way (up to ordering)
- Adding fractional ideals makes $I(\mathfrak{D}_K)$ into a group.

(Assume $\mathbb{Z}[\pi] = \mathfrak{D}_{K}$ is integrally closed)

The Class Group

- For any ideal $\mathfrak{a} \subset \mathfrak{D}_{K}$, we can write
 - $\mathfrak{a} = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_r^{e_r}$
 - In a unique way (up to ordering)
- Adding fractional ideals makes $I(\mathfrak{D}_K)$ into a group.
 - The **class group** is defined as
- Where $P(\mathfrak{D}_K) < I(\mathfrak{D}_K)$ is the subgroup of principal ideals

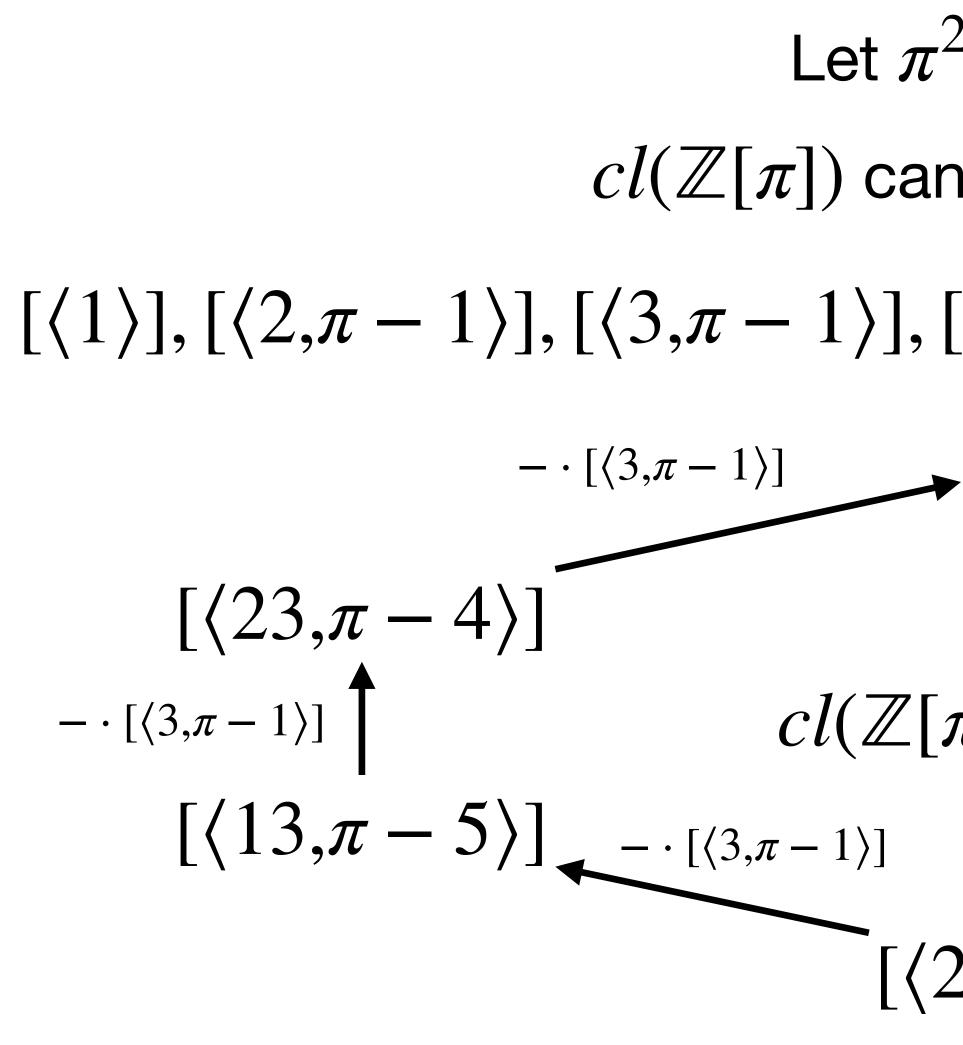
(Assume $\mathbb{Z}[\pi] = \mathfrak{D}_{K}$ is integrally closed)

 $cl(\mathfrak{D}_{K}) := I(\mathfrak{D}_{K})/P(\mathfrak{D}_{K})$

Example

Let $\pi^2 = -53$ $cl(\mathbb{Z}[\pi])$ can be given the representatives $[\langle 1 \rangle], [\langle 2, \pi - 1 \rangle], [\langle 3, \pi - 1 \rangle], [\langle 13, \pi - 5 \rangle], [\langle 17, \pi - 7 \rangle], [\langle 23, \pi - 4 \rangle]$

Example



Let $\pi^2 = -53$

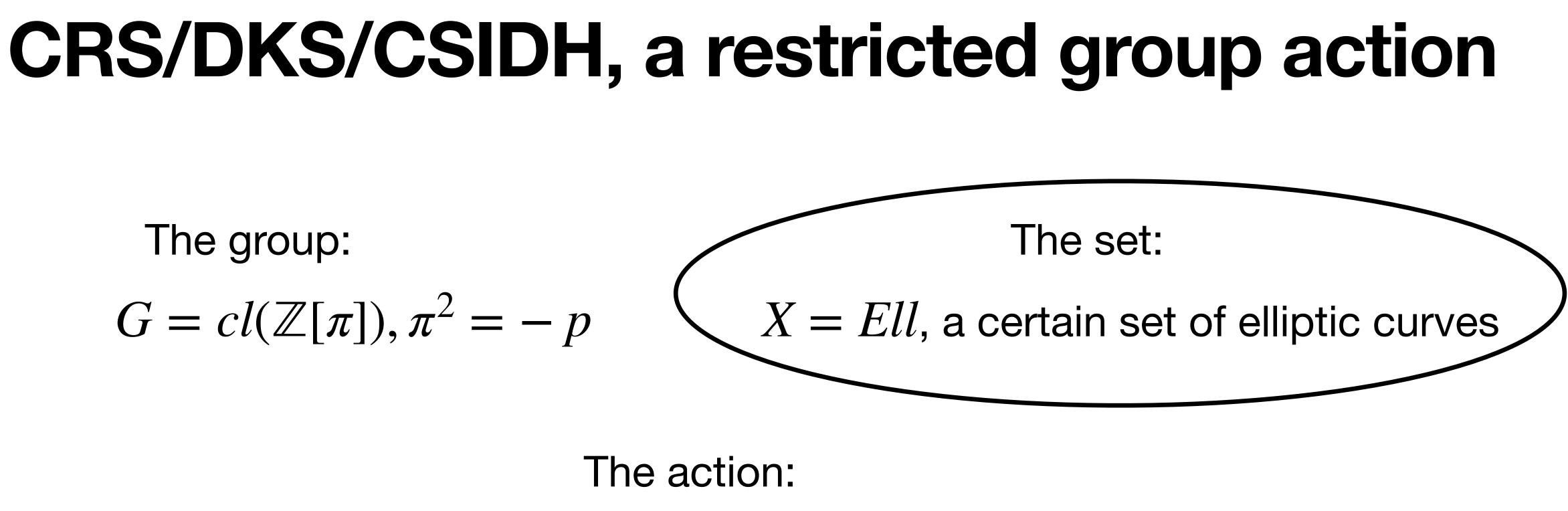
- $cl(\mathbb{Z}[\pi])$ can be given the representatives
- $[\langle 1 \rangle], [\langle 2, \pi 1 \rangle], [\langle 3, \pi 1 \rangle], [\langle 13, \pi 5 \rangle], [\langle 17, \pi 7 \rangle], [\langle 23, \pi 4 \rangle]$

 $[\langle 3, \pi - 1 \rangle]$ $[\langle 13, \pi - 5 \rangle] - \cdot [\langle 3, \pi - 1 \rangle] - \cdot [\langle 3, \pi - 1 \rangle] [\langle 17, \pi - 7 \rangle]$ $[\langle 2, \pi - 1 \rangle]$

The group: $G = cl(\mathbb{Z}[\pi]), \pi^2 = -p$

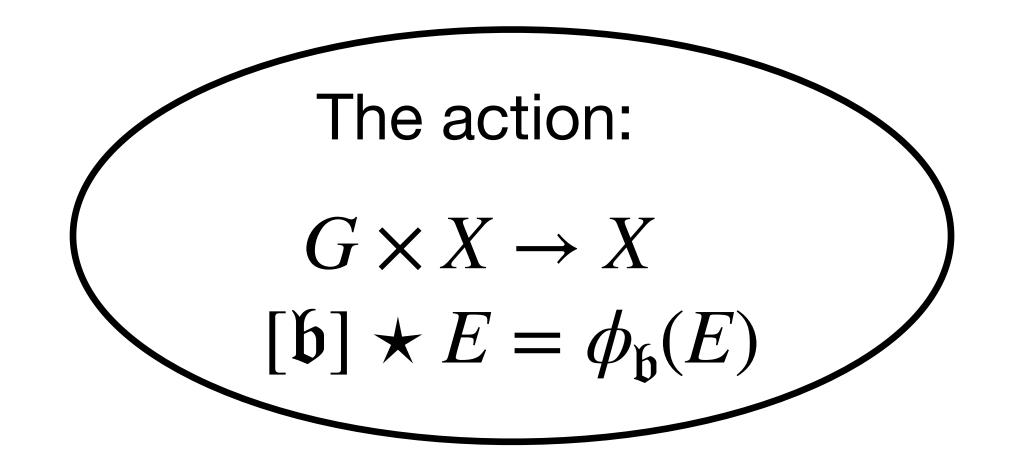
The action:

- $G \times X \to X$
- $[\mathfrak{b}] \star E = \phi_{\mathfrak{b}}(E)$



CRS/DKS/CSIDH, a restricted group action

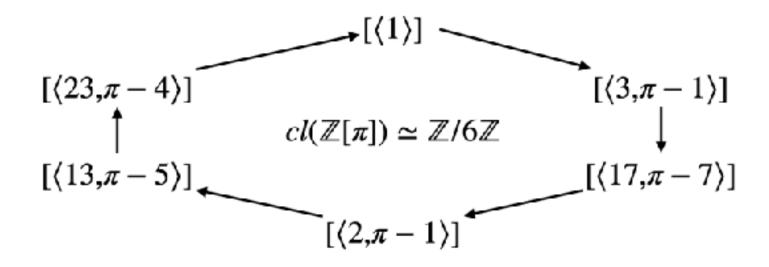
The group: $G = cl(\mathbb{Z}[\pi]), \pi^2 = -p$

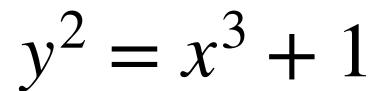


The set:

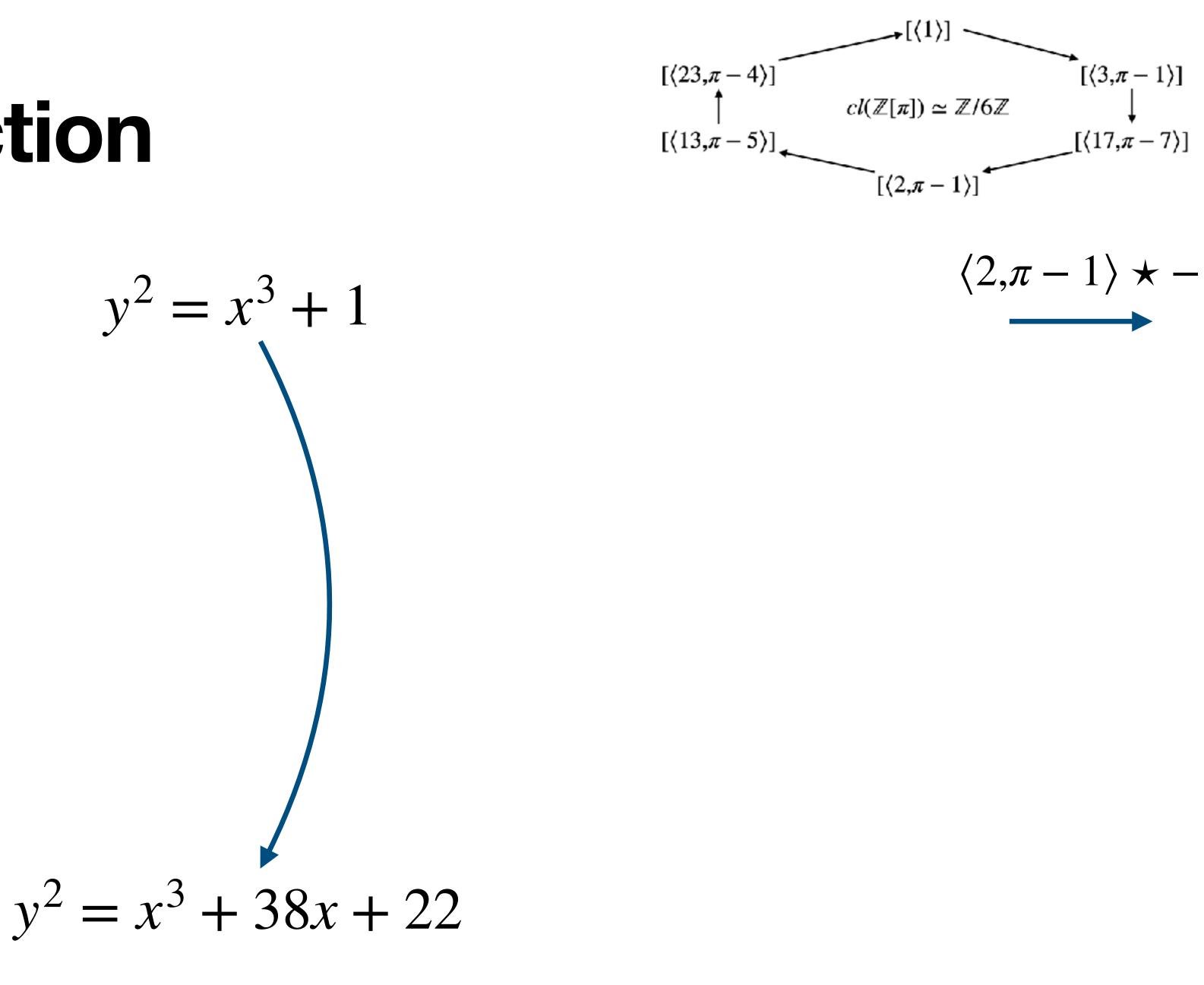
 $G = cl(\mathbb{Z}[\pi]), \pi^2 = -p$ X = Ell, a certain set of elliptic curves

Class Group Action

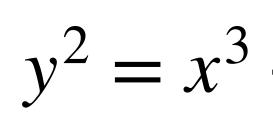


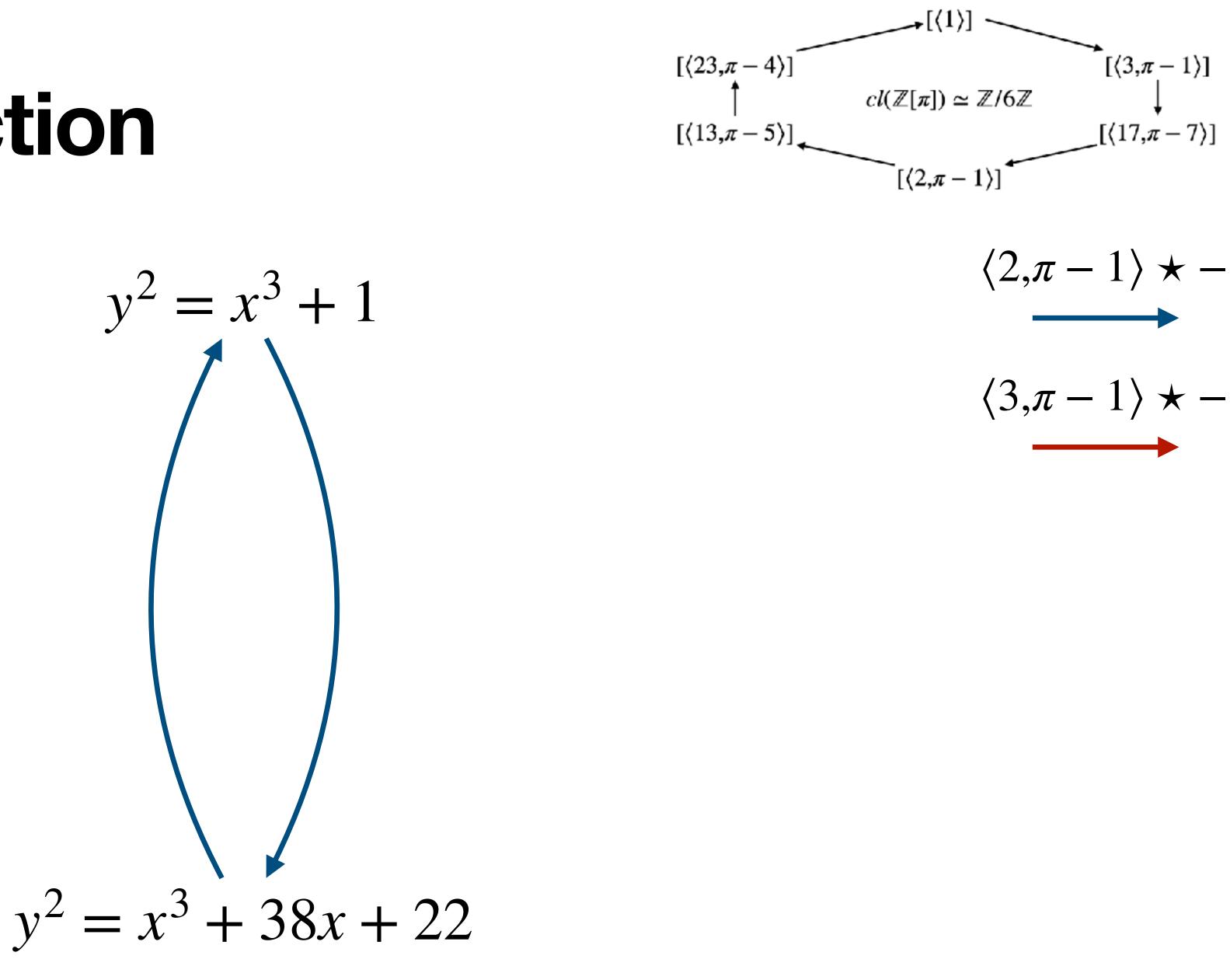


Class Group Action

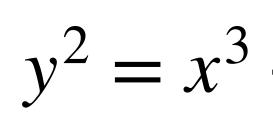


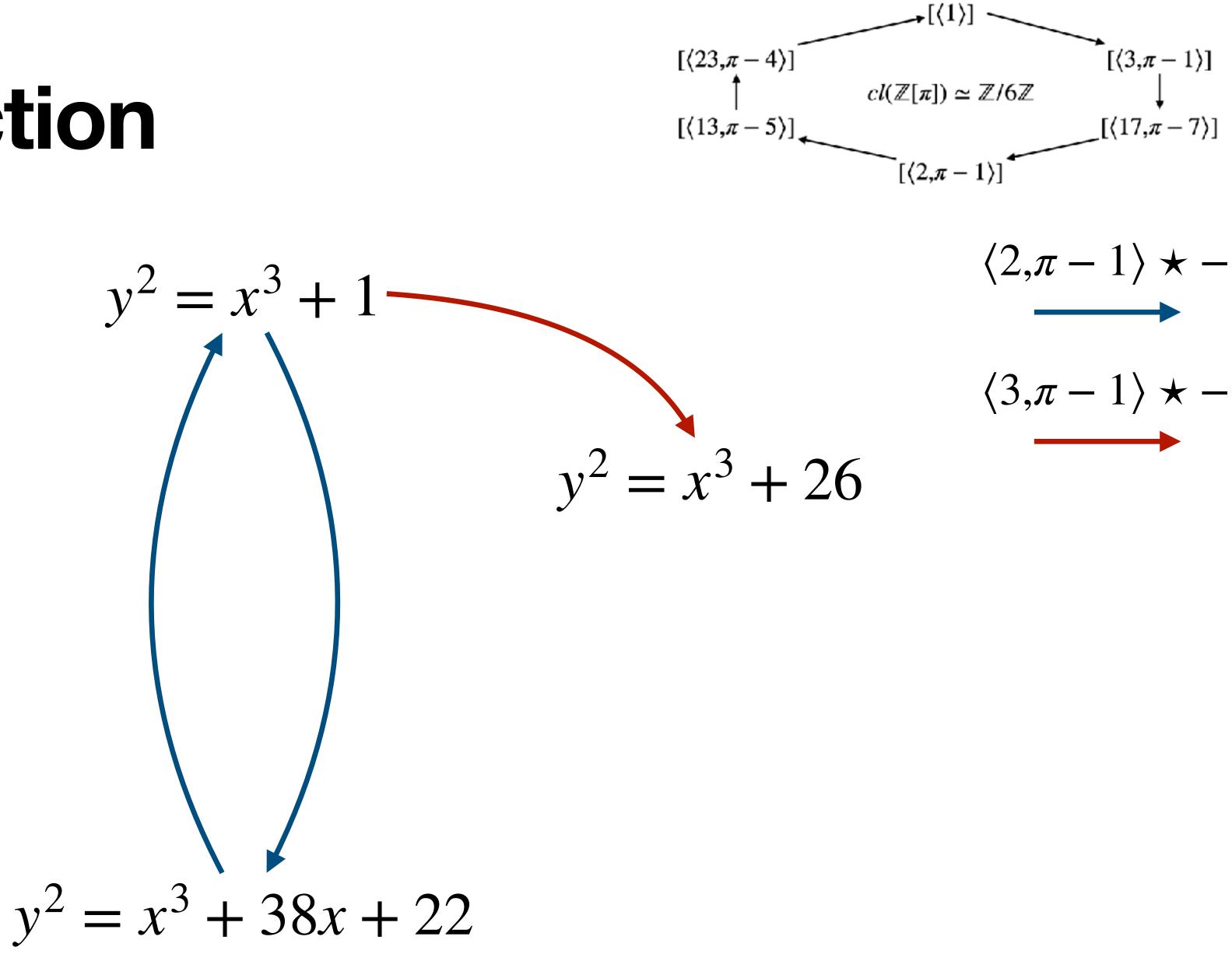
Class Group Action



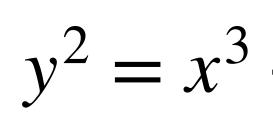


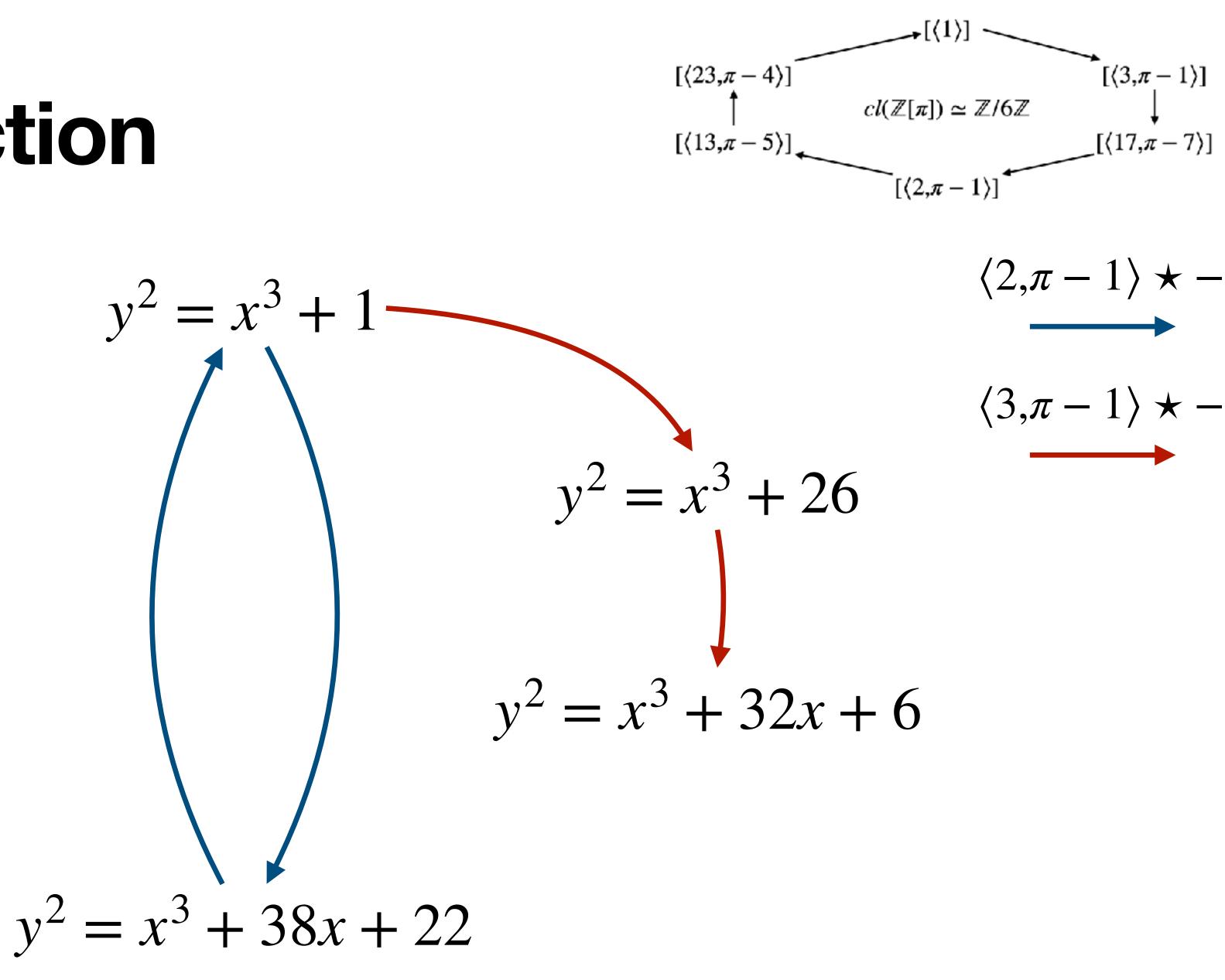
Class Group Action



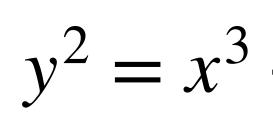


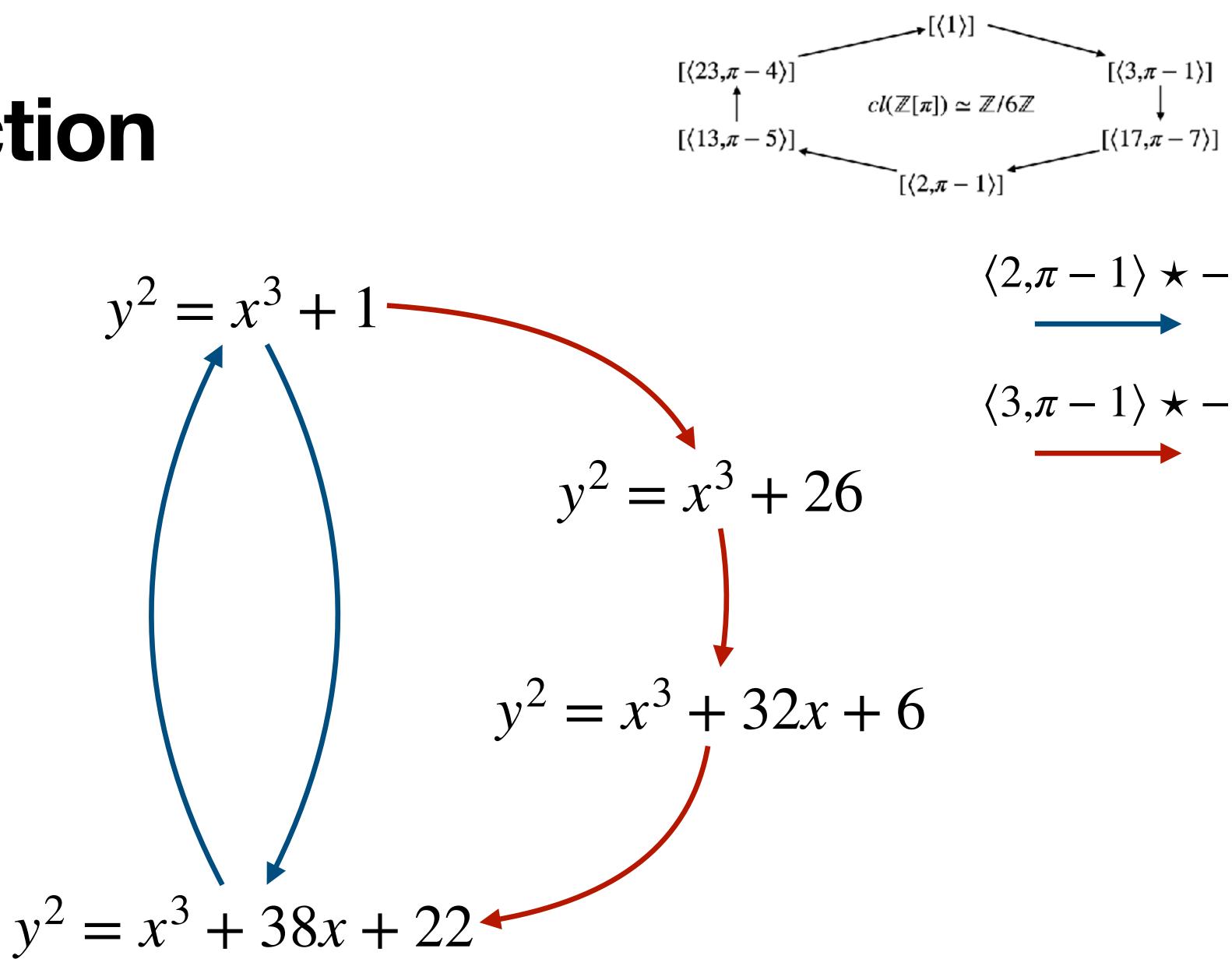
Class Group Action

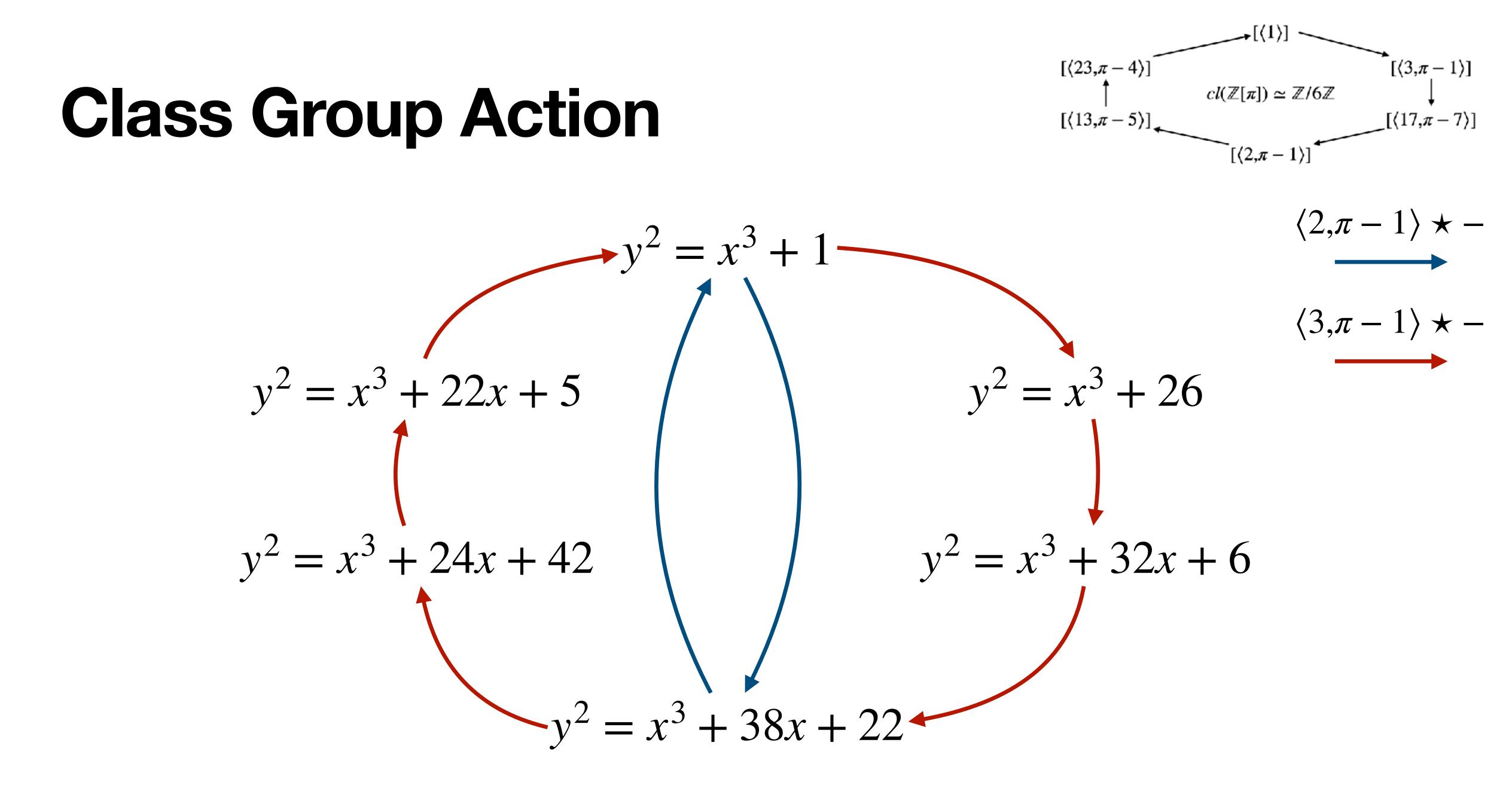




Class Group Action







CRS/DKS/CSIDH, a restricted group action

- $G \times X \to X$ $[\mathfrak{b}] \star E = \phi_{\mathfrak{b}}(E)$

Can only compute smooth degree isogenies

The action:

Can only compute the action of smooth normed ideals

CRS/DKS/CSIDH, a restricted group action

 $G \times X \to X$ $[\mathfrak{b}] \star E = \phi_{\mathfrak{h}}(E)$

Can only compute smooth degree isogenies

Fix generators $G = \langle g_1, g_2, \dots \rangle$ represents the element $g = g_1^{e_1}$

The action:

Can only compute the action of smooth normed ideals

$$\{g, g_r\}$$
, a vector $e = [e_1, ..., e_r] \in \mathbb{Z}^r$
 $\{g_2^{e_2} \dots g_r^{e_r}\}$.

CRS/DKS/CSIDH, a restricted group action The action:

 $G \times X \to X$ $[\mathfrak{b}] \star E = \phi_{\mathfrak{h}}(E)$

Can only compute smooth degree isogenies

Fix generators $G = \langle g_1, g_2, \dots \rangle$ represents the element $g = g_1^{e_1}$

Can evaluate the action of $e \in \mathbb{Z}^r$ whenever ||e|| is small

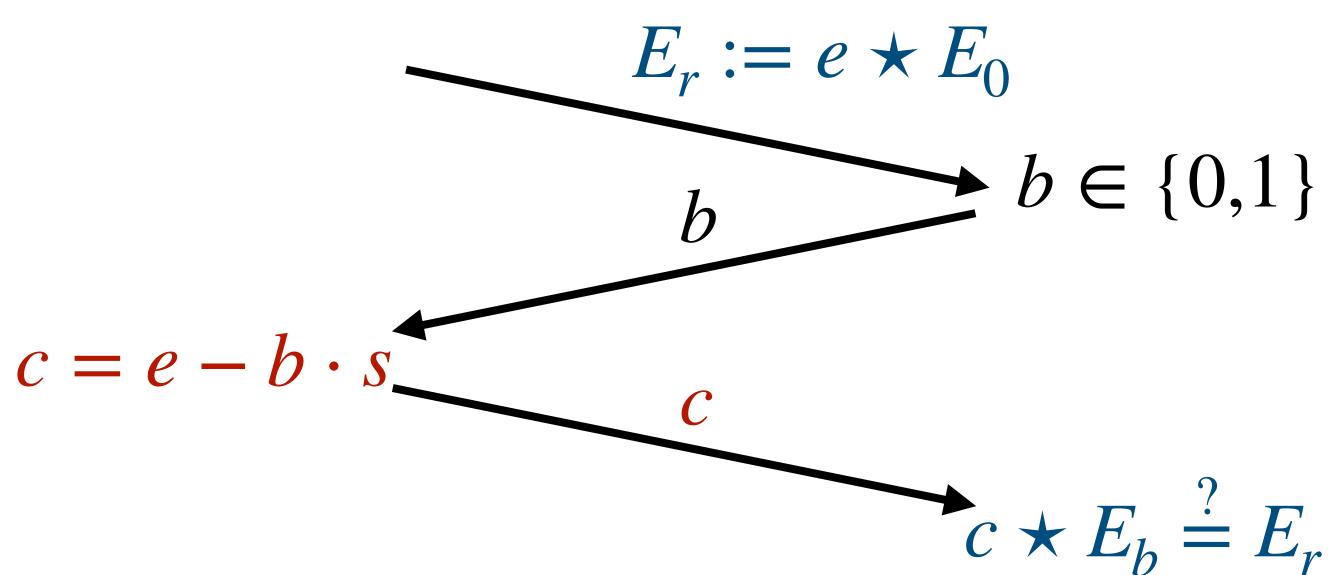
Can only compute the action of smooth normed ideals

$$\{g, g_r\}$$
, a vector $e = [e_1, ..., e_r] \in \mathbb{Z}^r$
 $\{g_2^{e_2} \dots g_r^{e_r}\}$.

Setup: $cl(\mathbb{Z}[\pi])$ acting on X, fixed $E_0 \in X$

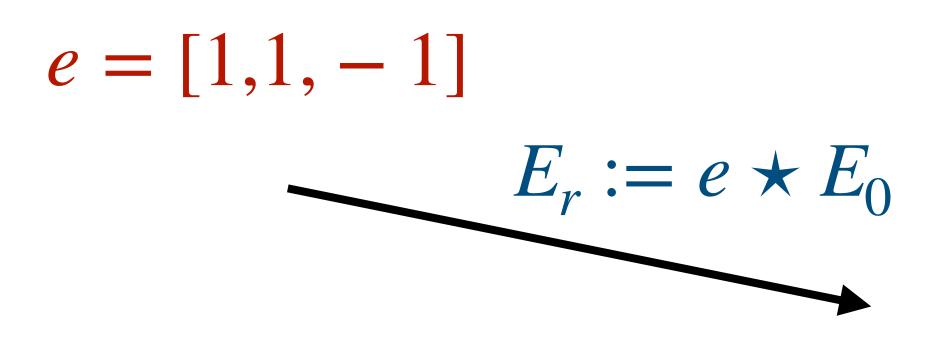
Secret: $s = [s_1, \dots, s_2] \in \mathbb{Z}^r$ Public: $E_1 := s \star E_0$

 $e = [e_1, ..., e_r] \in \mathbb{Z}^r, e_i \in \{-1, 0, 1\}$



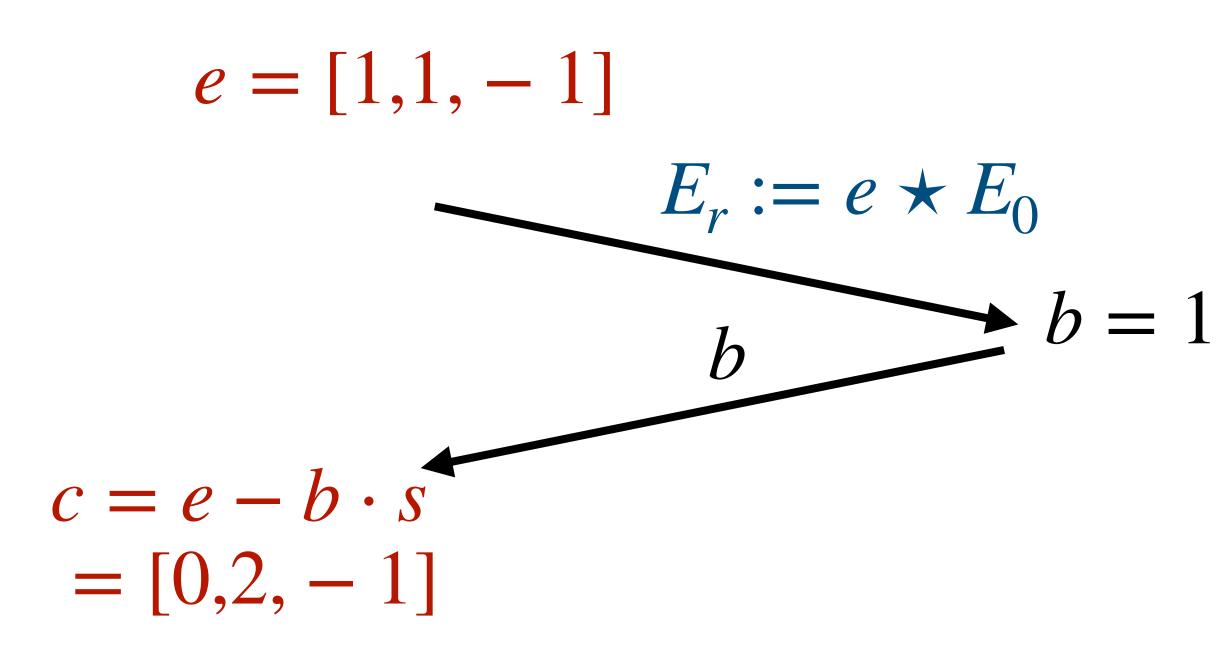
Example: Secret: s = [1, -1, 0]

Round 1



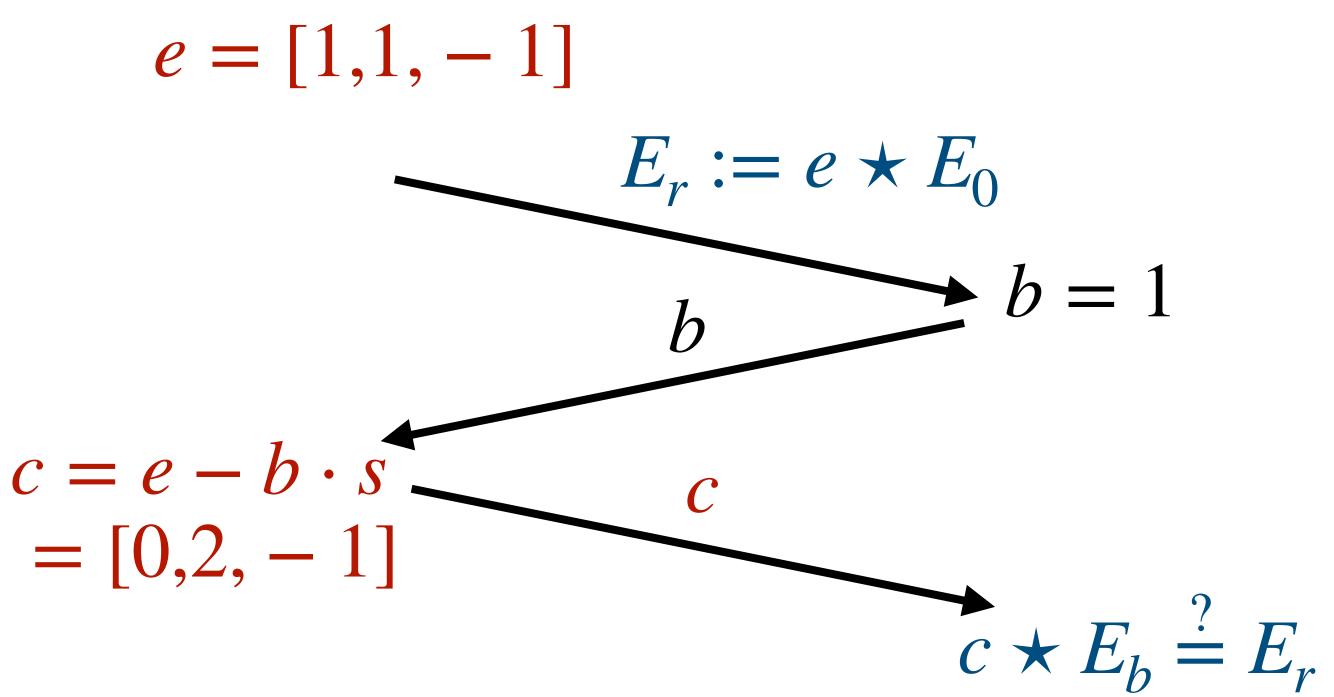
Example: Secret: s = [1, -1, 0]

Round 1



Example: Secret: s = [1, -1, 0]

Round 1

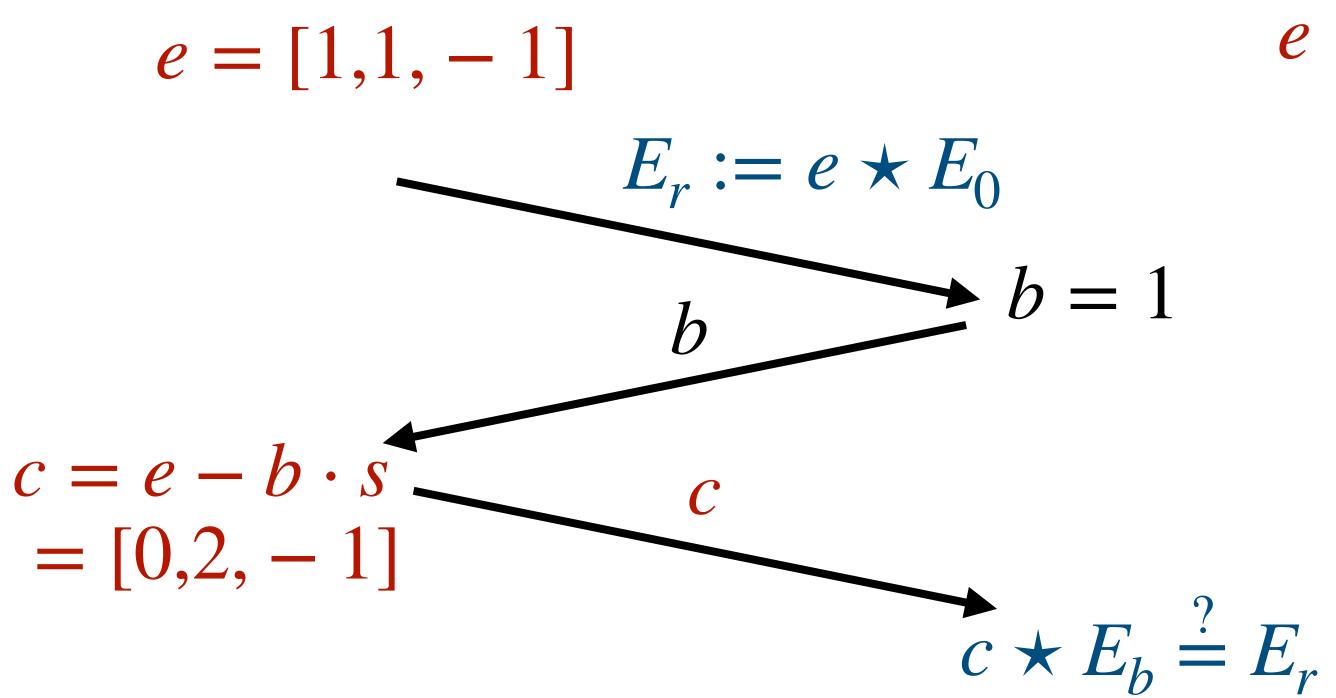


Attacker saw: c = [0, 2, -1]

Attacker saw: Binary Schnorr with CSIDH c = [0, 2, -1]

Example: Secret: s = [1, -1, 0]

Round 1



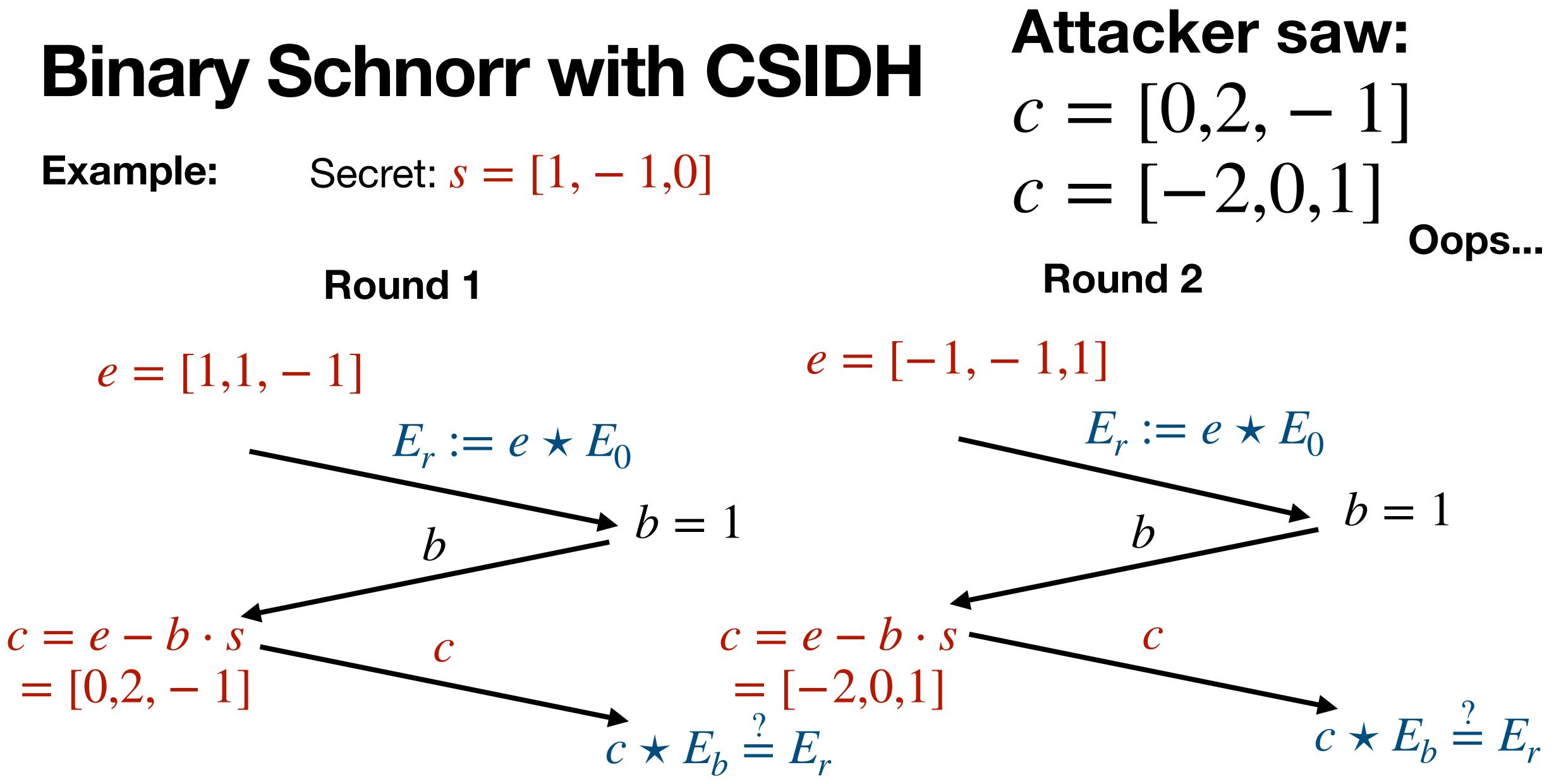
Round 2

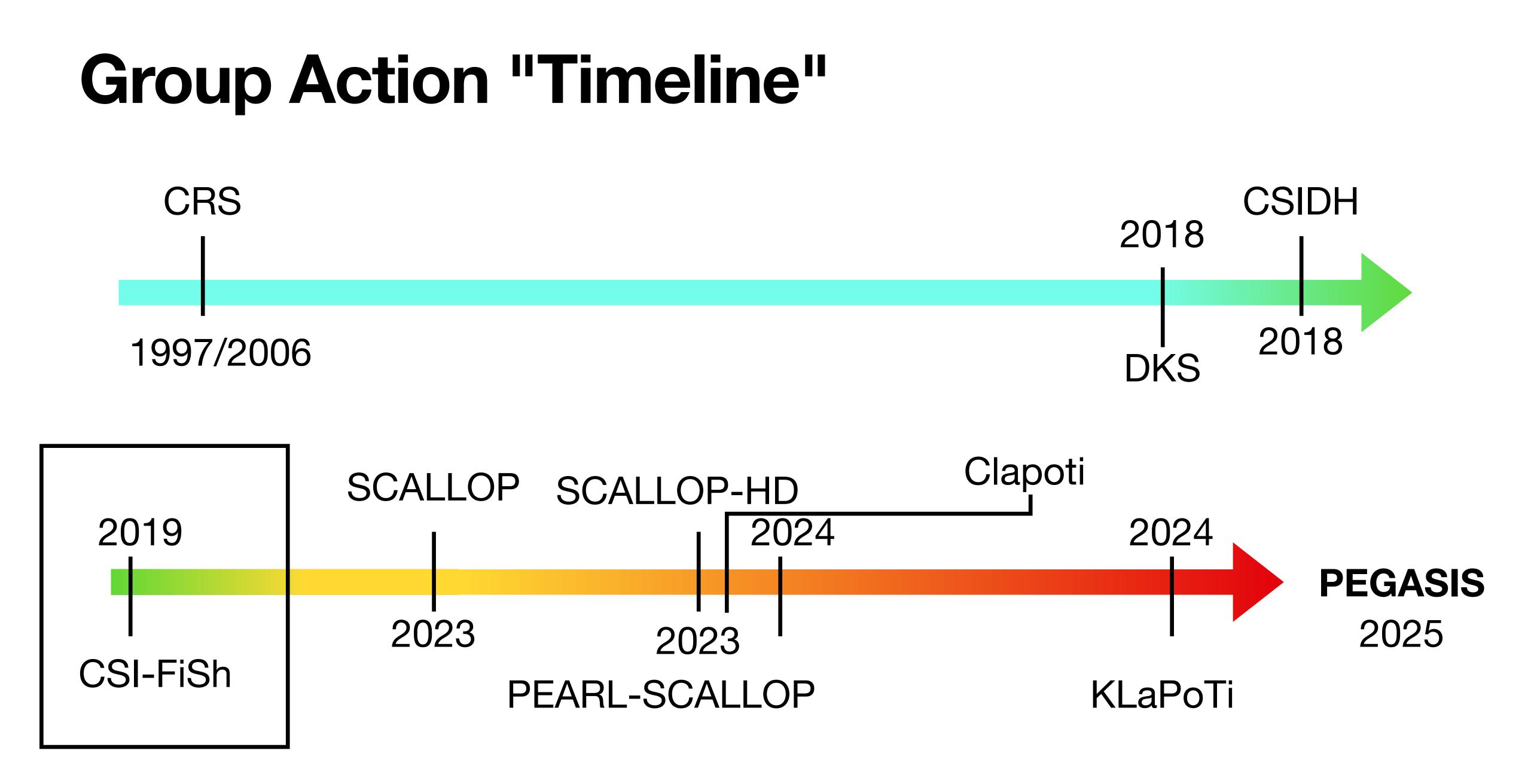
e = [-1, -1, 1] $E_r := e \star E_0$

Attacker saw: Binary Schnorr with CSIDH c = [0, 2, -1]

Example: Secret: s = [1, -1, 0]

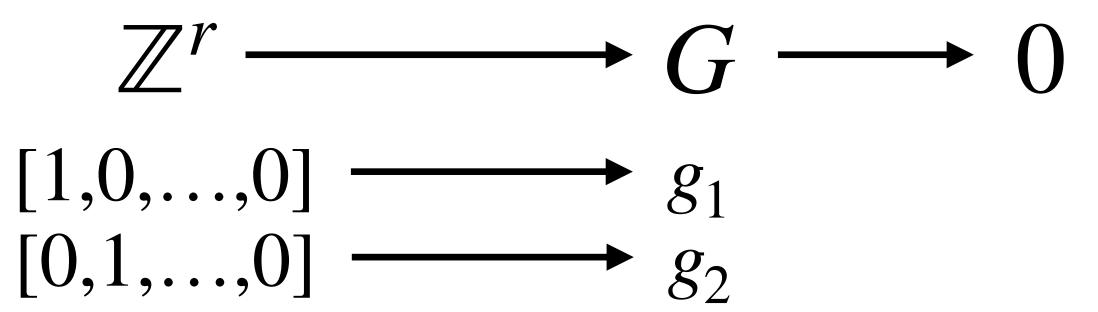


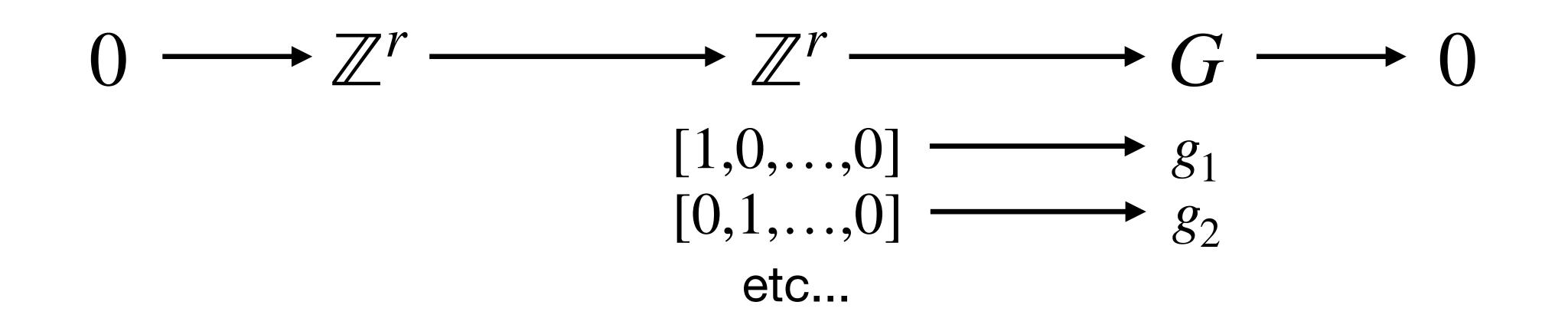




Assume $G = \langle g_1 \rangle$, order N Goal: Evaluate a "uniformly random" element of the form $[d,0,\ldots,0]$

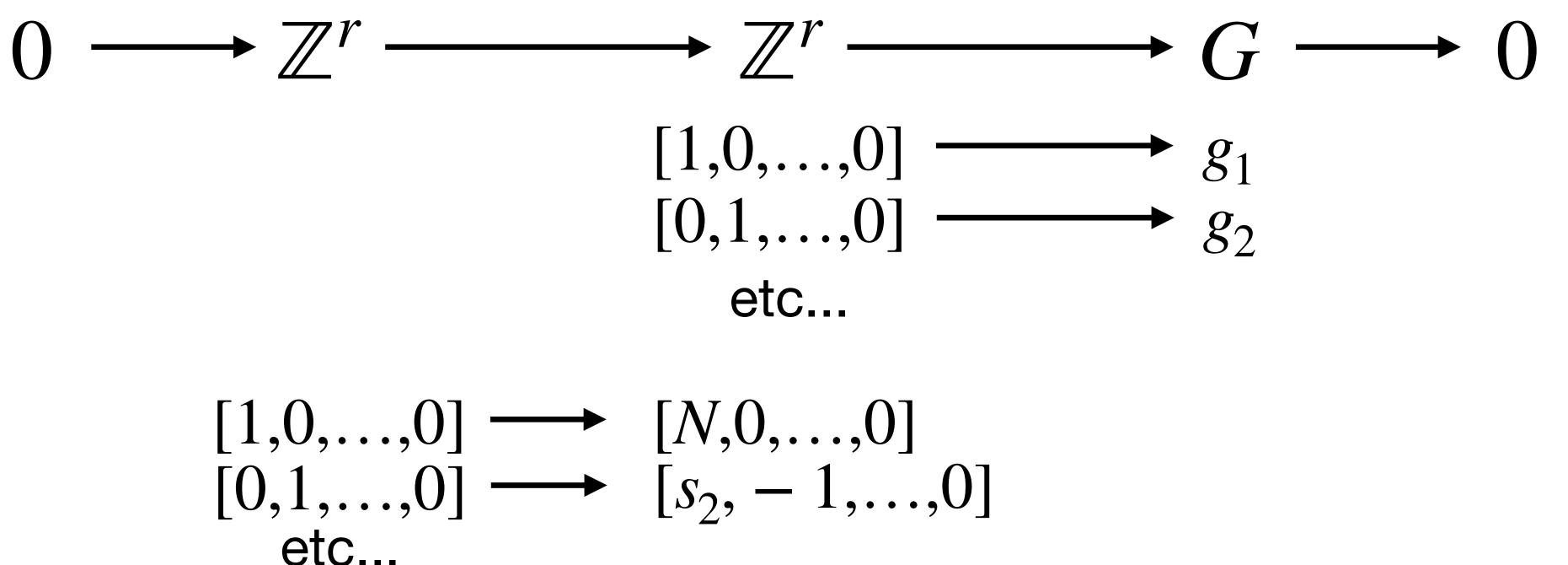
 $G = \langle g_1, g_2, \dots, g_r \rangle$





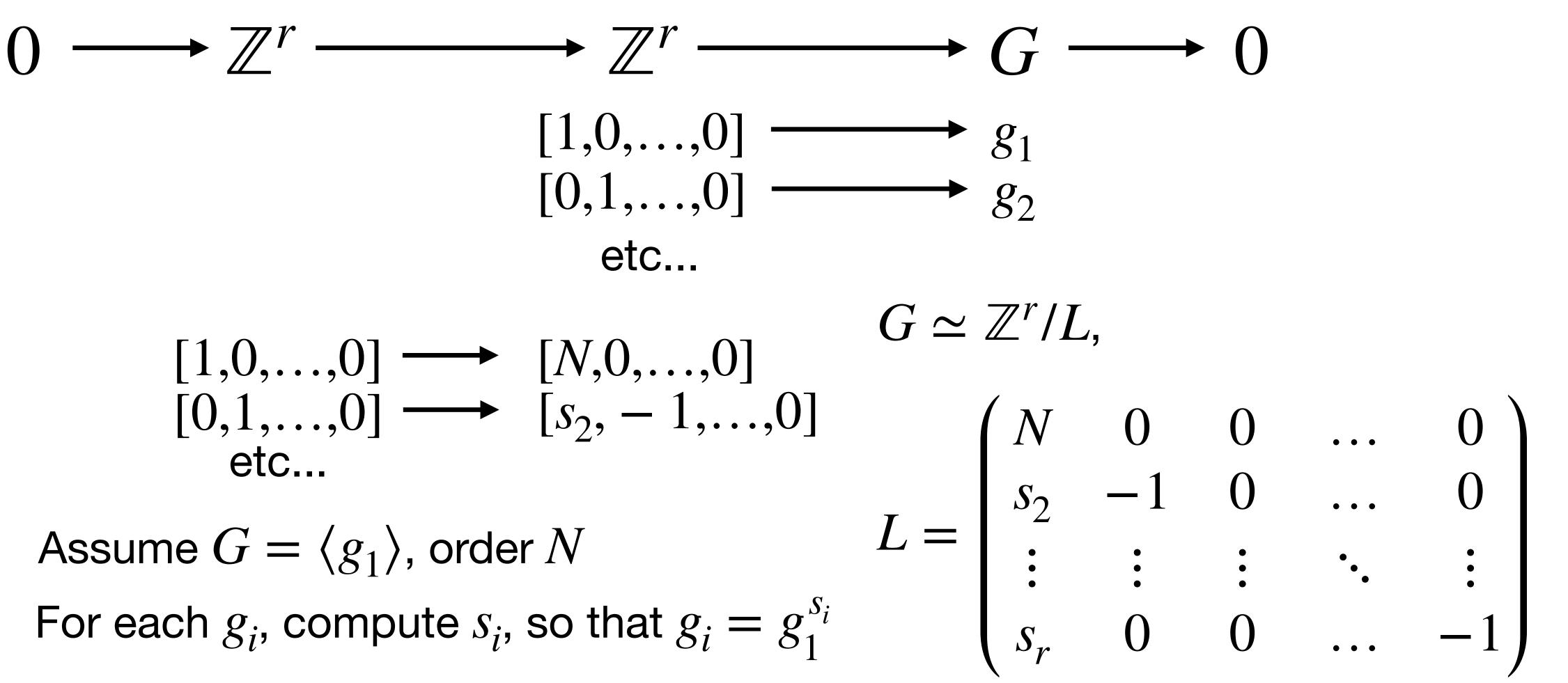
Assume $G = \langle g_1 \rangle$, order N For each g_i , compute s_i , so that $g_i = g_1^{s_i}$

 $G = \langle g_1, g_2, \dots, g_r \rangle$



Assume $G = \langle g_1 \rangle$, order N For each g_i , compute s_i , so that $g_i = g_1^{s_i}$

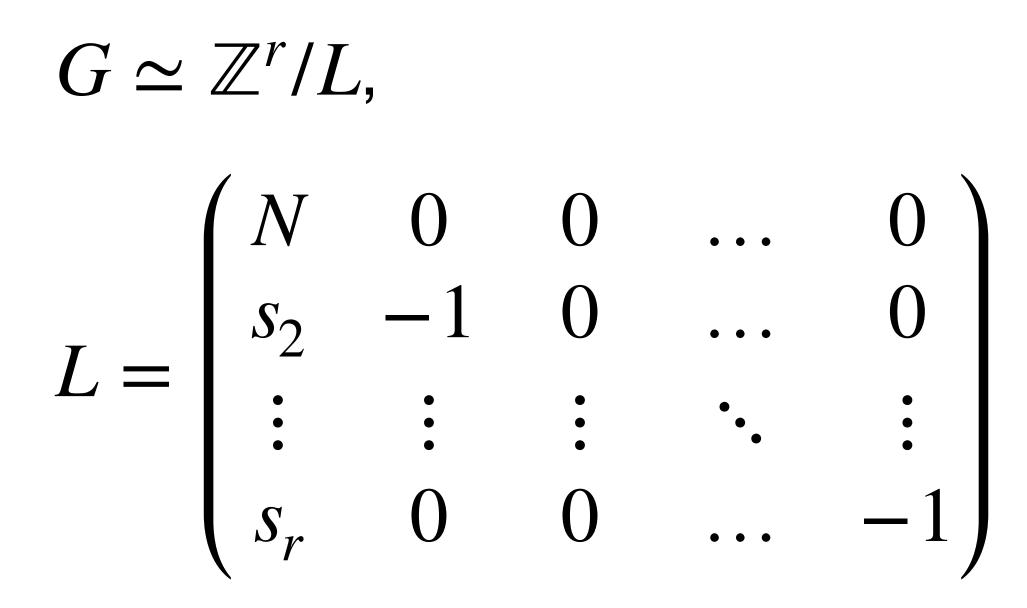
 $G = \langle g_1, g_2, \dots, g_r \rangle$

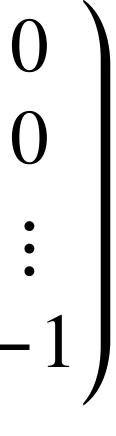


 $G = \langle g_1, g_2, \dots, g_r \rangle$

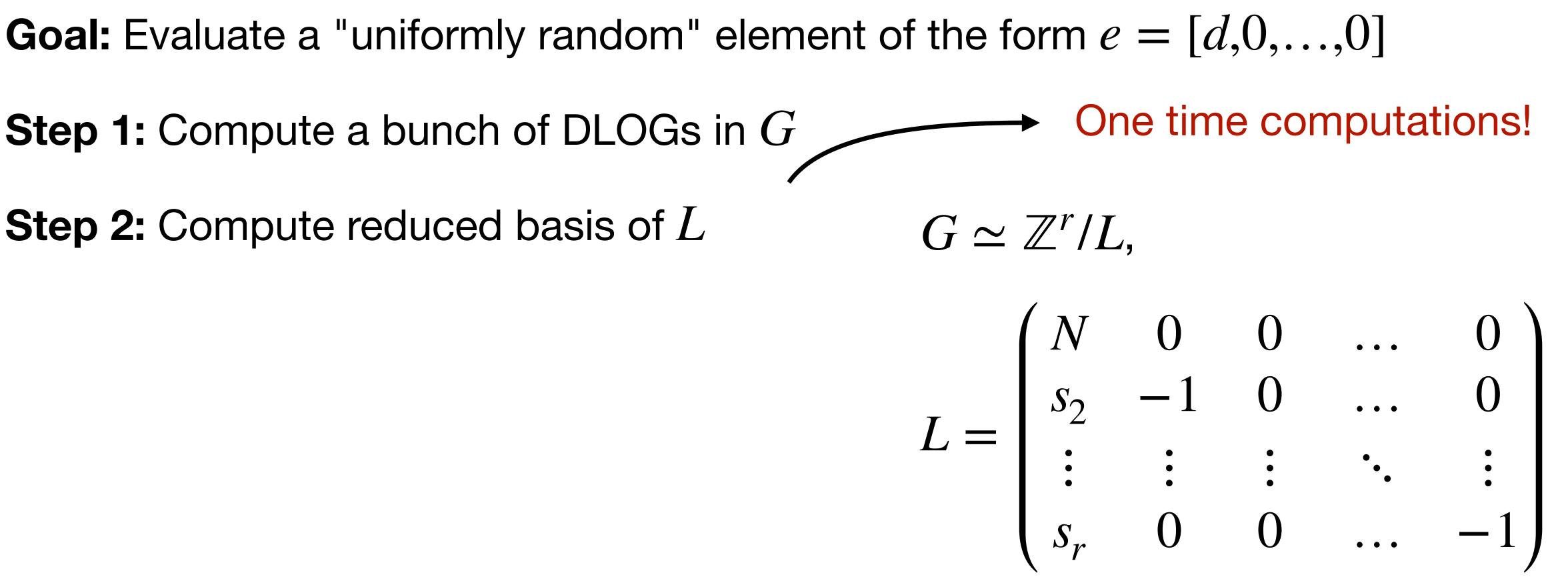
Step 1: Compute a bunch of DLOGs in G

Goal: Evaluate a "uniformly random" element of the form e = [d, 0, ..., 0]

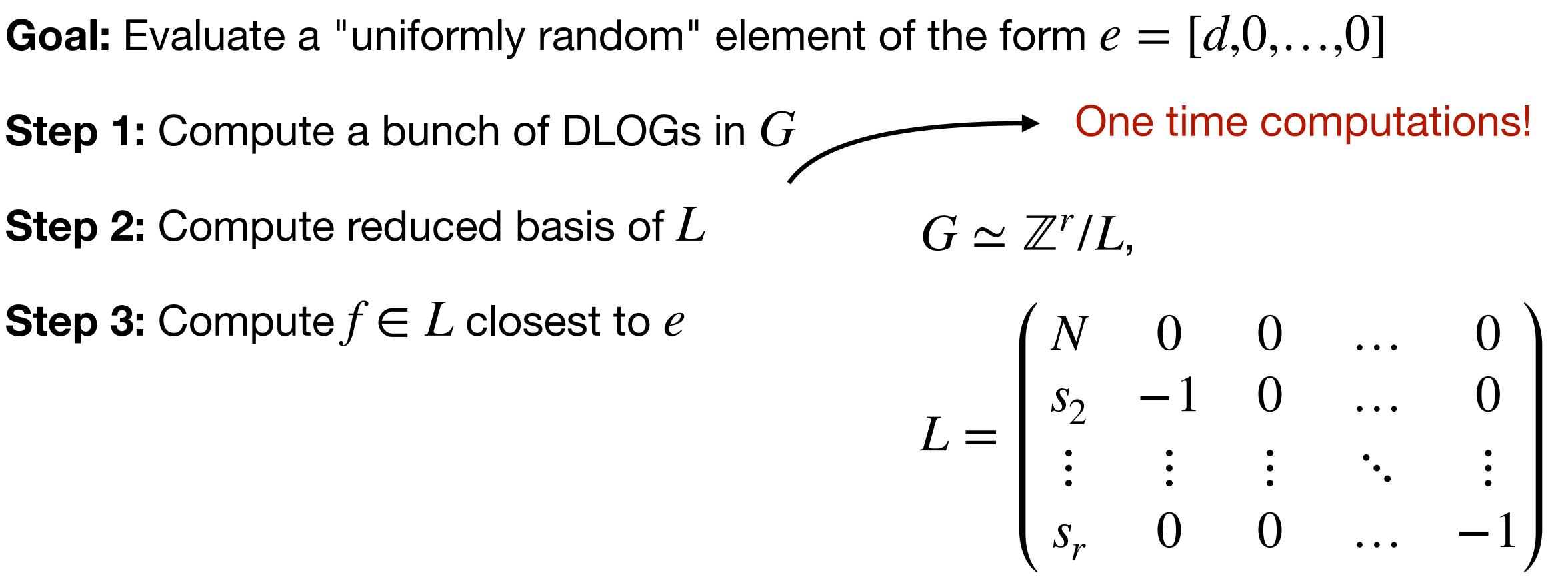




- **Step 1:** Compute a bunch of DLOGs in G
- **Step 2:** Compute reduced basis of *L*

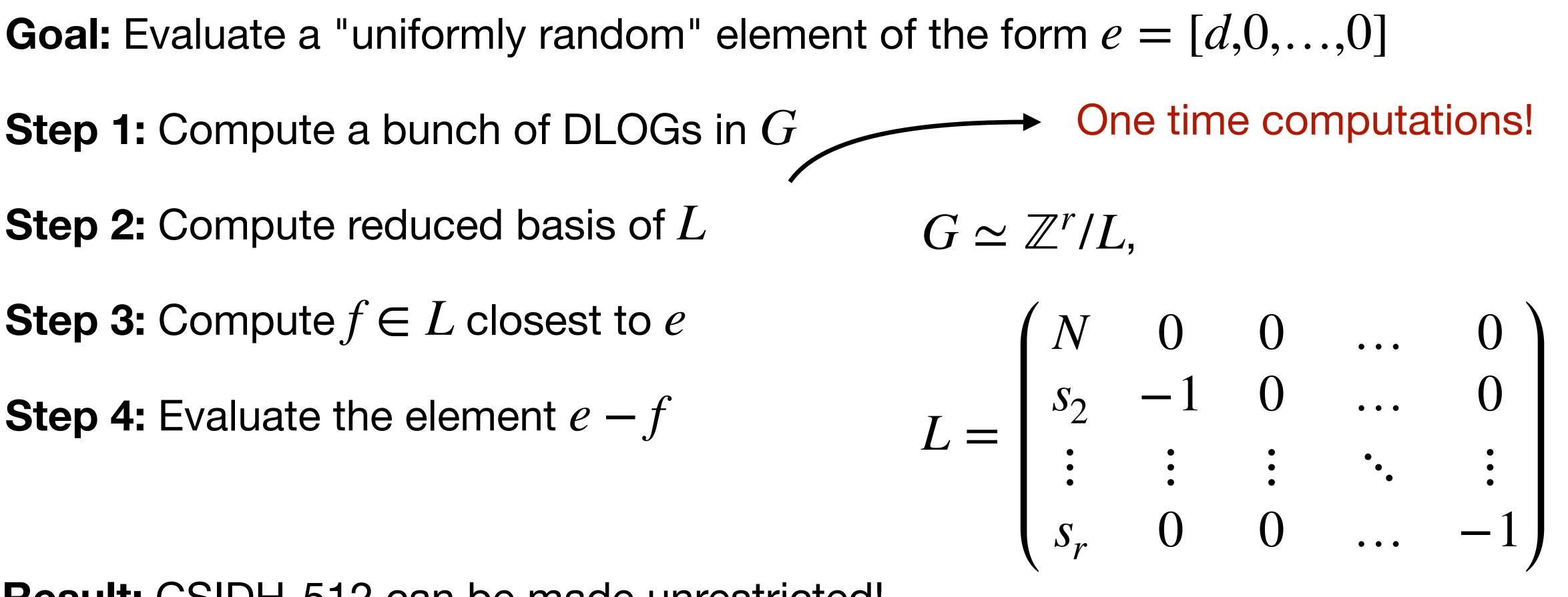


- **Step 1:** Compute a bunch of DLOGs in G
- **Step 2:** Compute reduced basis of L
- **Step 3:** Compute $f \in L$ closest to e

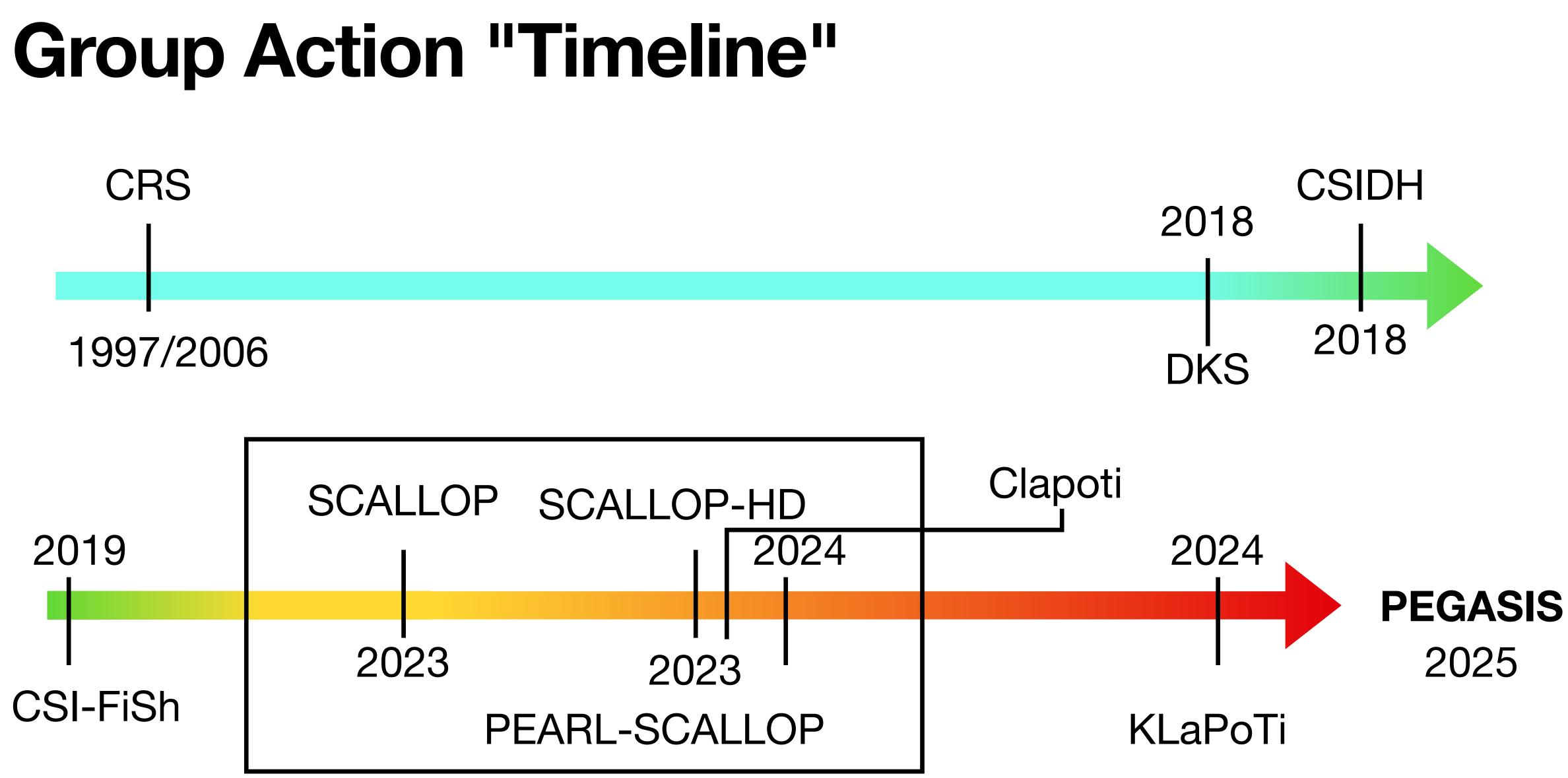


- **Step 1:** Compute a bunch of DLOGs in G
- **Step 2:** Compute reduced basis of L
- **Step 3:** Compute $f \in L$ closest to e
- **Step 4:** Evaluate the element e f

Result: CSIDH-512 can be made unrestricted!

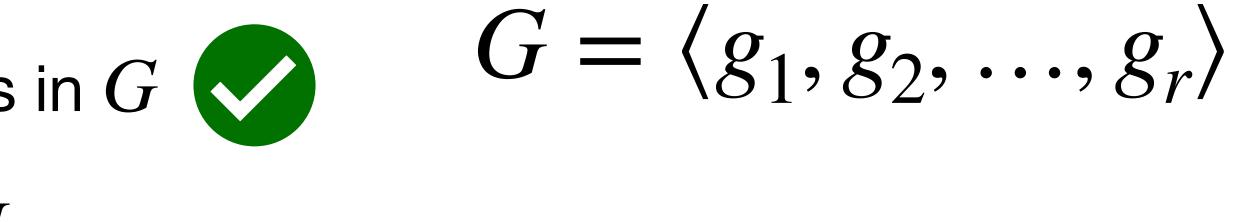


Debated quantum security :(



SCALLOP++

- **Step 1:** Compute a bunch of DLOGs in G
- **Step 2:** Compute reduced basis of L
- **Step 3:** Compute $f \in L$ closest to e
- **Step 4:** Evaluate the element e f



SCALLOP++

- **Step 1:** Compute a bunch of DLOGs in G
- **Step 2:** Compute reduced basis of *L*
- **Step 3:** Compute $f \in L$ closest to e
- **Step 4:** Evaluate the element e f

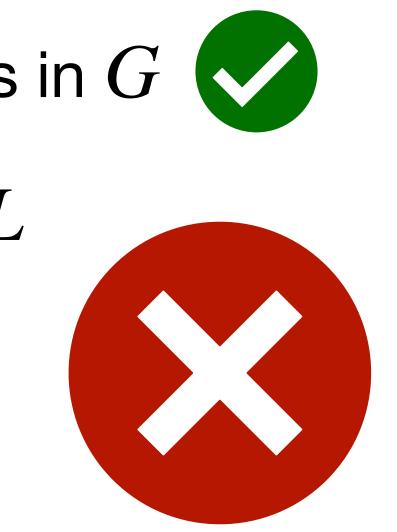
Security level	SCALLOP	SCALLOP-HD	PEARL-SCALLOP
CSIDH-512 CSIDH-1024	$35 \sec 12 \min, 30 \sec 35 \log 12 \min$	$1 \min, 28 \sec 19 \min$	$30 \sec 58 \sec$
CSIDH-1536	_	_	11 min, 50 sec

$G = \langle g_1, g_2, \dots, g_r \rangle$

SCALLOP++

- **Step 1:** Compute a bunch of DLOGs in G
- **Step 2:** Compute reduced basis of *L*
- **Step 3:** Compute $f \in L$ closest to e
- **Step 4:** Evaluate the element e f

_					
	Security level	SCALLOP	SCALL		
	CSIDH-512 CSIDH-1024 CSIDH-1536	$35 \sec$ 12 min, 30 sec	1 min, 19 :		



$G = \langle g_1, g_2, \dots, g_r \rangle$

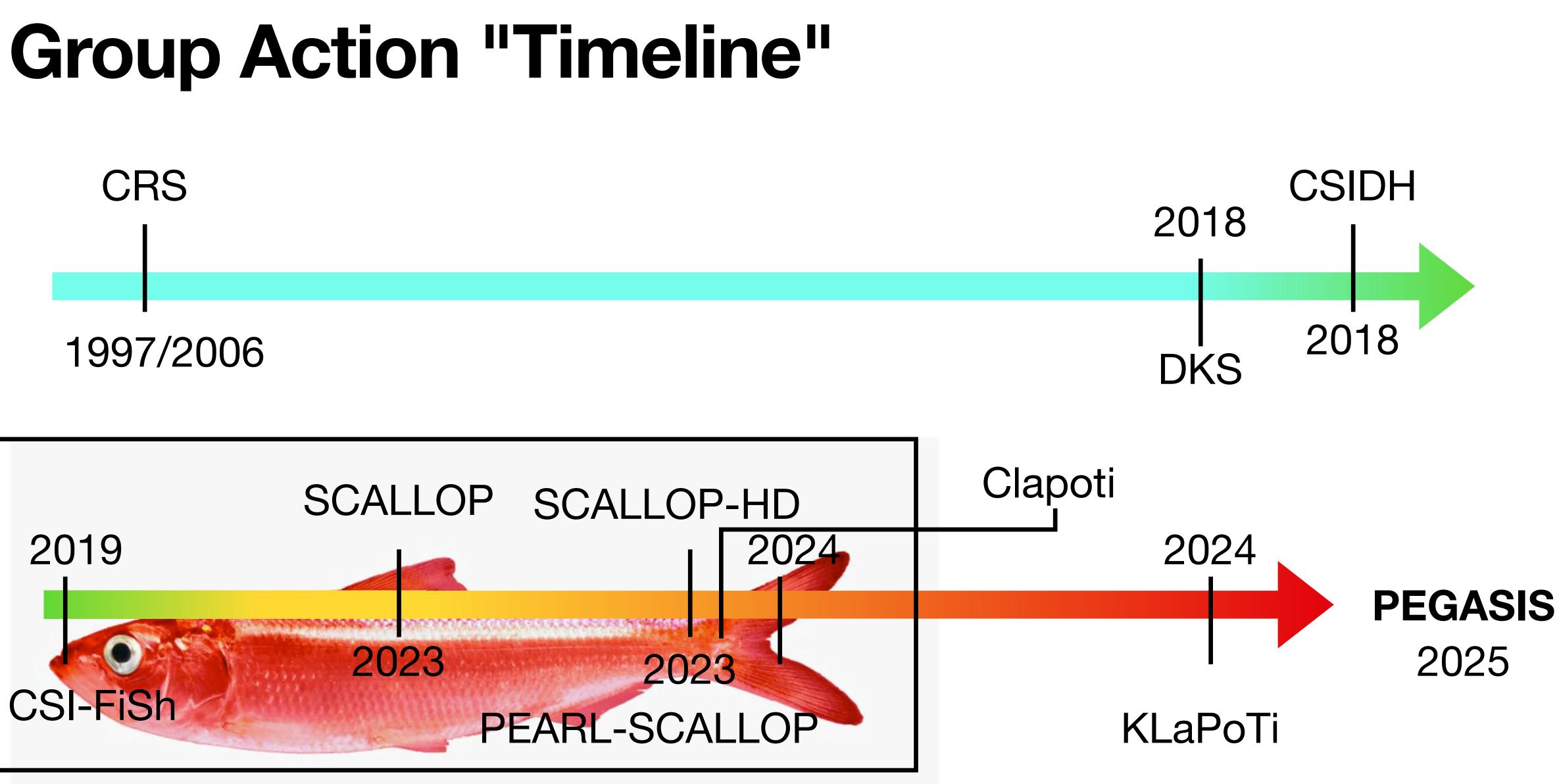
CSIDH-2000+:

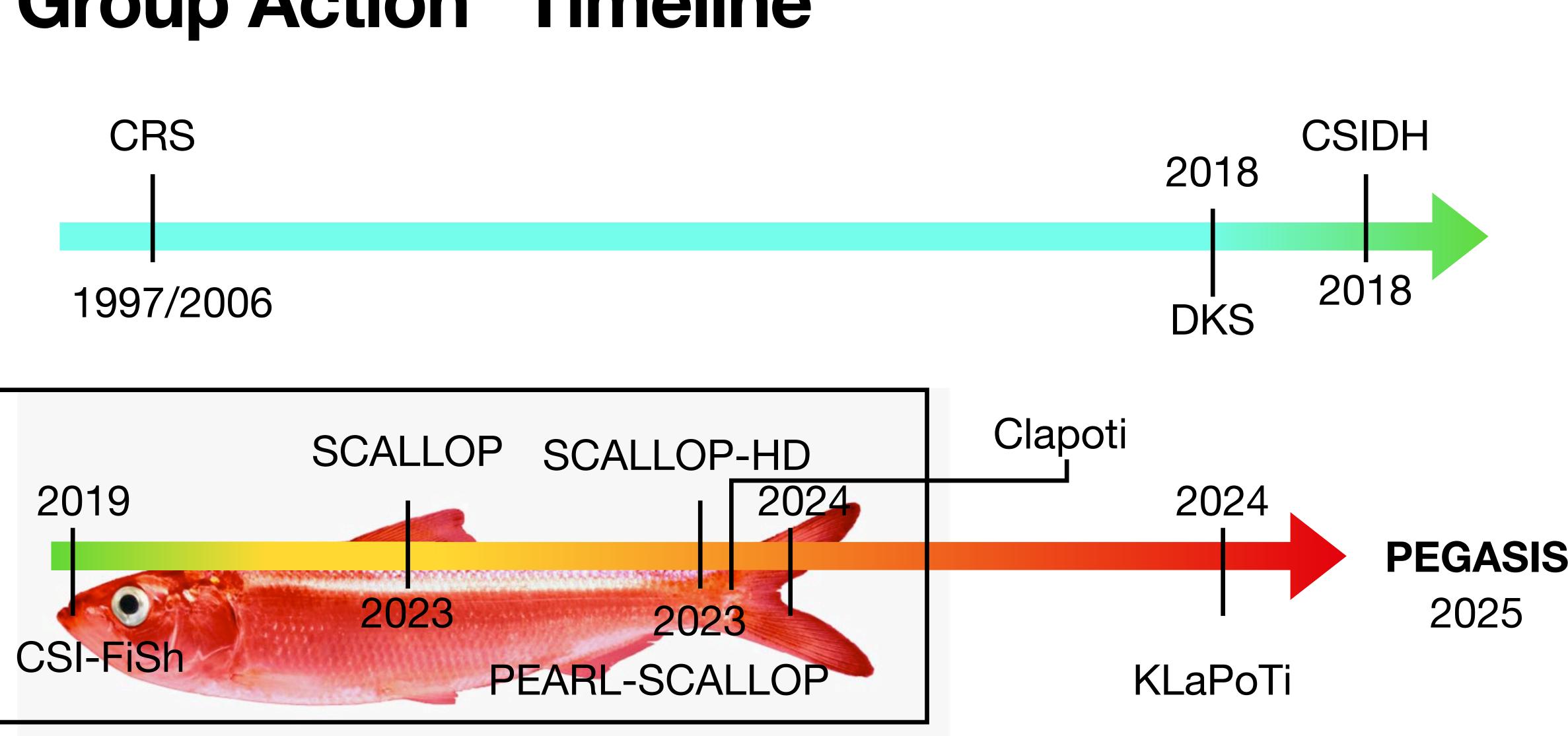
- *r* too large
- Step 2 infeasible
- r too small
- Step 4 infeasible

LOP-HD PEARL-SCALLOP

 $1, 28 \sec$ \min

 $30 \sec$ $58 \sec$ min, $50 \sec$ 11

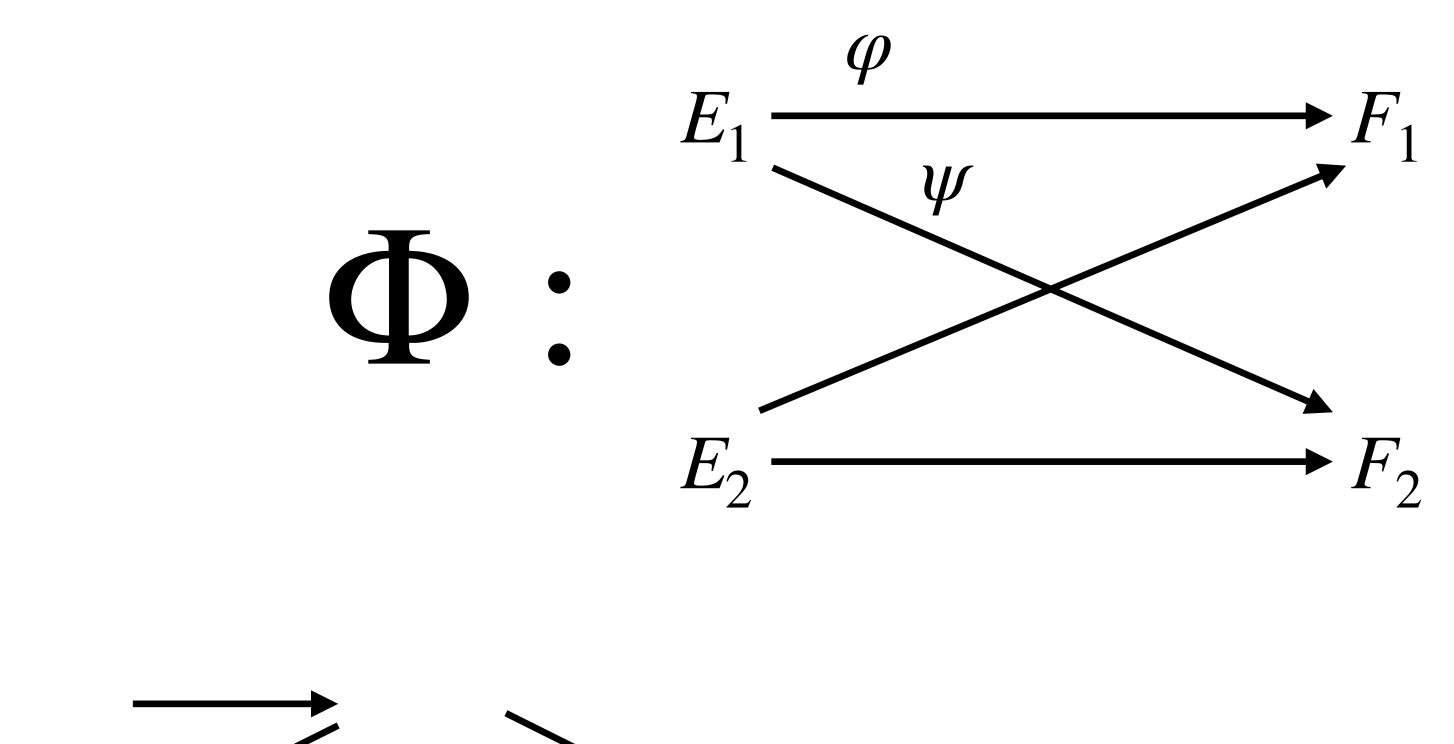




Interlude: Abelian Varieties in Isogeny-Based Cryptography

$\Phi: E_1 \times E_2 \to F_1 \times F_2$

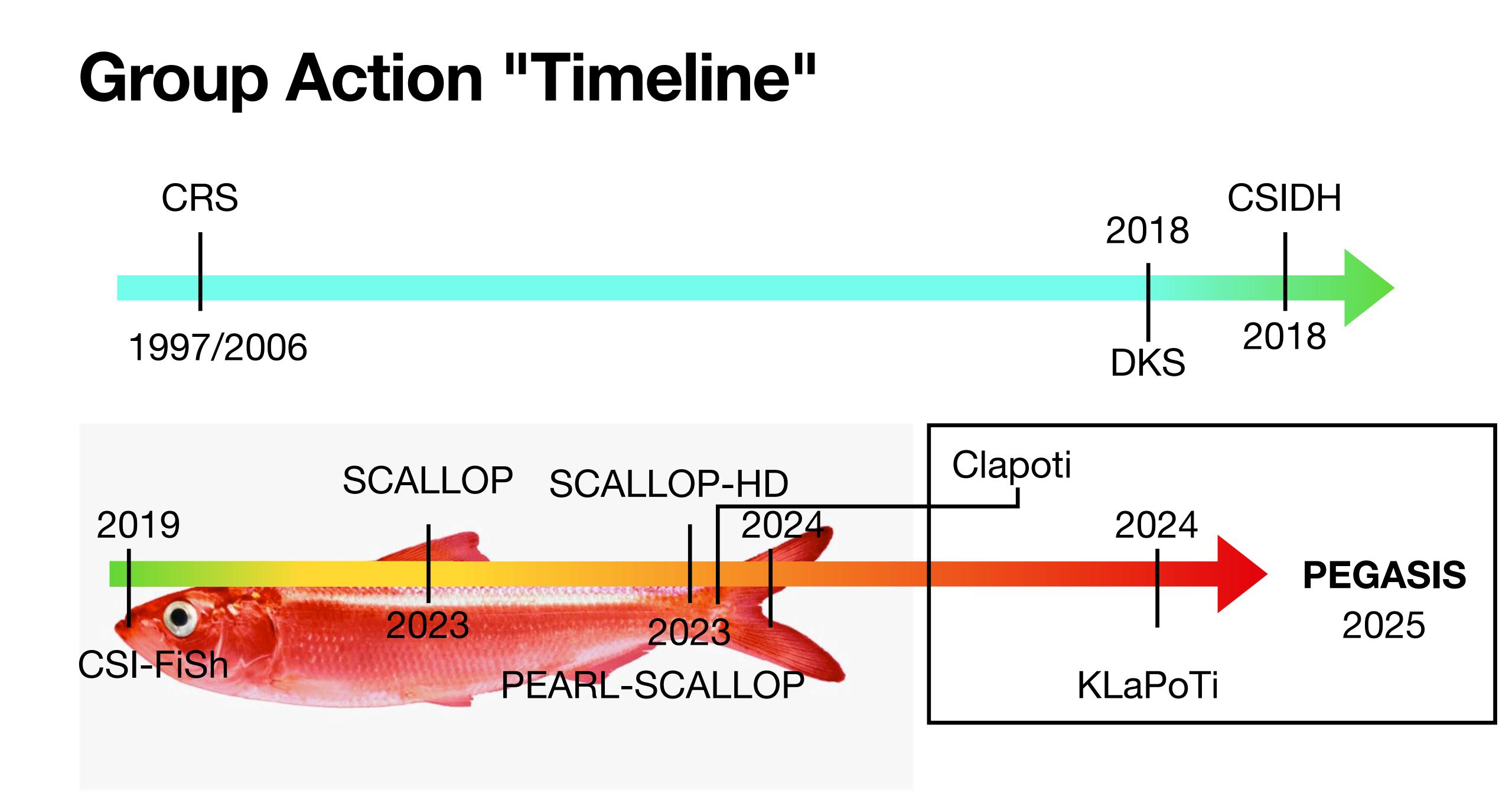
Interlude: Abelian Varieties in Isogeny-Based Cryptography



lf

Overly simplified: Can evaluate arbitrary degree φ , by embedding it in higher dimensional isogenies.

, then $\deg \Phi = \deg \varphi + \deg \psi$



Clapoti

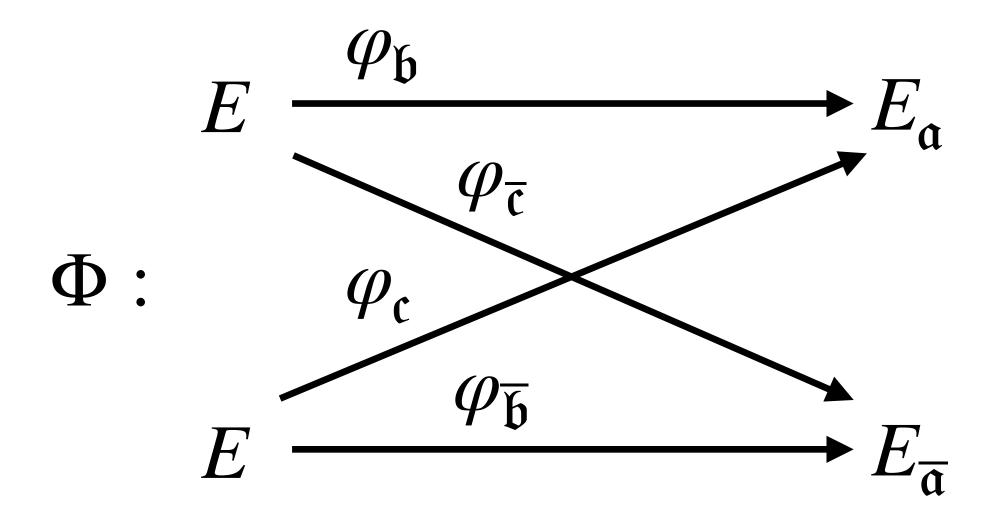
Goal: Evaluate action of [a]

Assume we have: $\mathfrak{b}, \mathfrak{c}$, satisfying: - $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}]$ - $n(\mathfrak{b}) + n(\mathfrak{c}) = 2^e$

Clapoti

Goal: Evaluate action of [a]

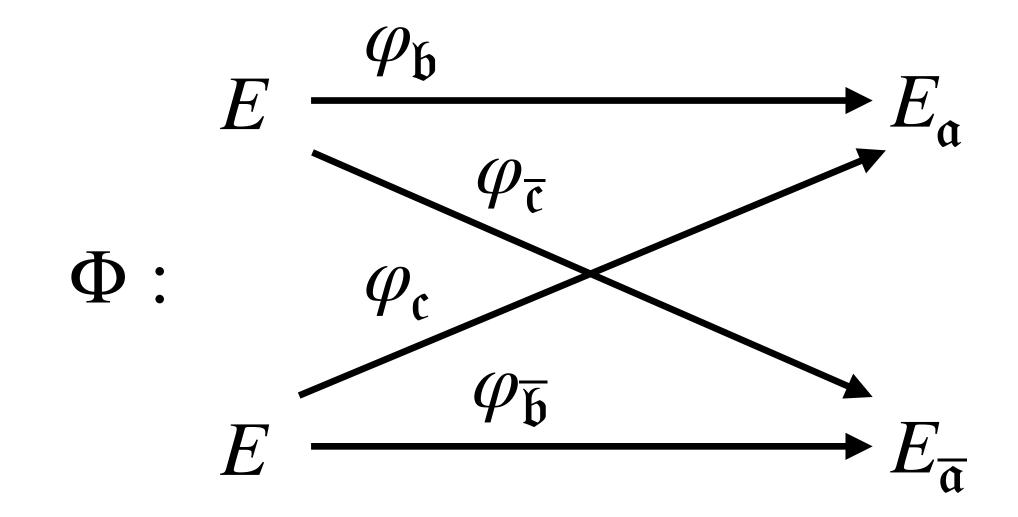
Assume we have: $\mathfrak{b}, \mathfrak{c}$, satisfying: - $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}]$ - $n(\mathfrak{b}) + n(\mathfrak{c}) = 2^e$



Clapoti

Goal: Evaluate action of [a]

Assume we have: $\mathfrak{b}, \mathfrak{c}$, satisfying: $- [\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}]$ $-n(\mathfrak{b}) + n(\mathfrak{c}) = 2^e$



Can compute Φ from ker $\Phi = \{(n(\mathfrak{b})P, \gamma(P)) \in E \times E \mid P \in E[2^e]\}$ $\rightarrow \gamma = \varphi_{\mathfrak{b}} \circ \varphi_{\overline{\mathfrak{c}}}$

Clapoti/KLaPoTi/PEGASIS

- Goal: Evaluate action of [a]
- Assume we have: $\mathfrak{b}, \mathfrak{c}$, satisfying: - $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}]$ - $n(\mathfrak{b}) + n(\mathfrak{c}) = 2^e$
- Clapoti: Can drop this requirement on $\mathfrak{b},\mathfrak{c},$ by going to dimension 8 Isogenies in dimension 8 are (for now) not practical

Clapoti/KLaPoTi/PEGASIS

- Goal: Evaluate action of [a]
- Assume we have: $\mathfrak{b}, \mathfrak{c}$, satisfying: - $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}]$ - $n(\mathfrak{b}) + n(\mathfrak{c}) = 2^e$
- Clapoti: Can drop this requirement on $\mathfrak{b},\mathfrak{c},$ by going to dimension 8 Isogenies in dimension 8 are (for now) not practical
- KLaPoTi: Finding $\mathfrak{b}, \mathfrak{c}$ can be done with a known algorithm (KLPT)! - 2^e needs to be quite large (compared to $disc(\mathbb{Z}[\pi])$)

Clapoti/KLaPoTi/PEGASIS

- Goal: Evaluate action of [a]
- Assume we have: $\mathfrak{b}, \mathfrak{c}$, satisfying: - $[\mathfrak{a}] = [\mathfrak{b}] = [\mathfrak{c}]$ - $n(\mathfrak{b}) + n(\mathfrak{c}) = 2^e$
- Clapoti: Can drop this requirement on $\mathfrak{b},\mathfrak{c},$ by going to dimension 8 Isogenies in dimension 8 are (for now) not practical
- KLaPoTi: Finding \mathfrak{b} , \mathfrak{c} can be done with a known algorithm (KLPT)! 2^e needs to be quite large (compared to $disc(\mathbb{Z}[\pi])$)
- PEGASIS: Original Clapoti + several tricks = works in dimension 4
 Seems to be the right middle ground!

PEGASIS - Results

Paper	Impl.	500	1000	1500	2000	4000
SCALLOP [21]*	C++	$35 \mathrm{s}$	$750 \mathrm{~s}$			
SCALLOP-HD [15]*	Sage	88 s	$1140 \ s$			_
PEARL-SCALLOP [3]*	C++	30 s	$58 \ { m s}$	$710 \mathrm{~s}$		
KLaPoTi [49]	Sage	207 s				_
	Rust	1.95 s	—	—	—	_
PEGASIS (This work)	Sage	1.53 s	$4.21 \mathrm{\ s}$	$10.5 \ s$	$21.3~{\rm s}$	$121 \mathrm{\ s}$

PEGASIS works over \mathbb{F}_p , and can be instantiated Frobenius!

Conclusion: (Unrestricted) effective group actions now exists,

enabling many (so far, theoretical) constructions!

