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G × X → X
(g, x) → g ⋆ x

Group , Set G X

- For all , we have x ∈ X 1G ⋆ x = x
- For all  and , we have x ∈ X g1, g2 ∈ G (g1g2) ⋆ x = g1 ⋆ (g2 ⋆ x)

Free and Transitive: For all , there exists a unique  so x, y ∈ X g ∈ G y = g ⋆ x
Example: Let  be a cyclic group of order .  
Then  acts free and transitively on  by exponentiation

H p
G = (ℤ/pℤ)× X = H∖{1H}
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For any ideal , we can write𝔞 ⊂ 𝔒K

The Class Group

In a unique way (up to ordering)

Where  is the subgroup of principal idealsP(𝔒K) < I(𝔒K)

Adding fractional ideals makes  into a group.I(𝔒K)

𝔞 = 𝔭e1
1 ⋅ … ⋅ 𝔭er

r

cl(𝔒K) := I(𝔒K)/P(𝔒K)

The class group is defined as

(Assume  is integrally closed)ℤ[π] = 𝔒K
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[⟨1⟩]

[⟨2,π − 1⟩]

[⟨3,π − 1⟩]

[⟨17,π − 7⟩]

[⟨23,π − 4⟩]

[⟨13,π − 5⟩]
cl(ℤ[π]) ≃ ℤ/6ℤ

− ⋅ [⟨3,π − 1⟩]

− ⋅ [⟨3,π − 1⟩]

− ⋅ [⟨3,π − 1⟩]− ⋅ [⟨3,π − 1⟩]

− ⋅ [⟨3,π − 1⟩]

− ⋅ [⟨3,π − 1⟩]
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Class Group Action

y2 = x3 + 1

y2 = x3 + 26

y2 = x3 + 32x + 6

y2 = x3 + 38x + 22

y2 = x3 + 24x + 42

y2 = x3 + 22x + 5

⟨2,π − 1⟩ ⋆ −

⟨3,π − 1⟩ ⋆ −
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Binary Schnorr with CSIDH
Setup:  acting on , fixed cl(ℤ[π]) X E0 ∈ X

Secret:  
Public: 

s = [s1, …s2] ∈ ℤr

E1 := s ⋆ E0

e = [e1, …, er] ∈ ℤr, ei ∈ {−1,0,1}
Er := e ⋆ E0

b ∈ {0,1}b

c = e − b ⋅ s

c ⋆ Eb
?= Er

c
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Binary Schnorr with CSIDH
Example: Secret: s = [1, − 1,0]

e = [1,1, − 1]
Er := e ⋆ E0

b = 1b

 c = e − b ⋅ s
= [0,2, − 1]

c ⋆ Eb
?= Er

c

e = [−1, − 1,1]

b = 1b

 c = e − b ⋅ s
= [−2,0,1]

c ⋆ Eb
?= Er

c

Round 1 Round 2

Attacker saw: 
 c = [0,2, − 1]

c = [−2,0,1]
Oops...

Er := e ⋆ E0
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CSi-FiSh: REGA -> EGA

, 
 
G ≃ ℤr /L

L =

N 0 0 … 0
s2 −1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
sr 0 0 … −1

Goal: Evaluate a "uniformly random" element of the form  

Step 1: Compute a bunch of DLOGs in 


Step 2: Compute reduced basis of 


Step 3: Compute  closest to 


Step 4: Evaluate the element 

e = [d,0,…,0]

G

L

f ∈ L e

e − f

Result: CSIDH-512 can be made unrestricted!

One time computations!

Debated quantum security :(
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SCALLOP++

Step 1: Compute a bunch of DLOGs in 


Step 2: Compute reduced basis of 


Step 3: Compute  closest to 


Step 4: Evaluate the element 
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SCALLOP++

Step 1: Compute a bunch of DLOGs in 


Step 2: Compute reduced basis of 


Step 3: Compute  closest to 


Step 4: Evaluate the element 

G

L

f ∈ L e

e − f

CSIDH-2000+: 
 too large  

- Step 2 infeasible 
 too small 

- Step 4 infeasible

r

r

G = ⟨g1, g2, …, gr⟩
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Interlude: Abelian Varieties in Isogeny-Based Cryptography

Φ : E1 × E2 → F1 × F2



Interlude: Abelian Varieties in Isogeny-Based Cryptography

E1

E2

F1

F2

If = , then deg Φ = deg φ + deg ψ

Overly simplified: Can evaluate arbitrary degree , 
by embedding it in higher dimensional isogenies. 

φ

Φ :
φ

ψ
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Goal: Evaluate action of  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[𝔞]
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Clapoti

Goal: Evaluate action of  
 
Assume we have: , satisfying:  
     -  
     - 

[𝔞]

𝔟, 𝔠
[𝔞] = [𝔟] = [𝔠]
n(𝔟) + n(𝔠) = 2e

E

E

E𝔞

E𝔞

φ𝔟

φ𝔠
φ𝔠

φ𝔟

Φ :

Can compute  from Φ ker Φ = {(n(𝔟)P, γ(P)) ∈ E × E ∣ P ∈ E[2e]}

γ = φ𝔟 ∘ φ𝔠



Clapoti/KLaPoTi/PEGASIS
Goal: Evaluate action of  
 
Assume we have: , satisfying:  
     -  
     - 

[𝔞]

𝔟, 𝔠
[𝔞] = [𝔟] = [𝔠]
n(𝔟) + n(𝔠) = 2e

- Clapoti: Can drop this requirement on , by going to dimension 8 
- Isogenies in dimension 8 are (for now) not practical
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PEGASIS - Results

PEGASIS works over , and can be instantiated Frobenius!𝔽p

Conclusion: (Unrestricted) effective group actions now exists,  
                      enabling many (so far, theoretical) constructions!



Thank you!
Questions?


